IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v18y1989i2-3p292-326.html
   My bibliography  Save this article

The Analysis of Social Science Data with Missing Values

Author

Listed:
  • RODERICK J. A. LITTLE

    (University of California at Los Angeles)

  • DONALD B. RUBIN

    (Harvard University)

Abstract

Methods for handling missing data in social science data sets are reviewed. Limitations of common practical approaches, including complete-case analysis, available-case analysis and imputation, are illustrated on a simple missing-data problem with one complete and one incomplete variable. Two more principled approaches, namely maximum likelihood under a model for the data and missing-data mechanism and multiple imputation, are applied to the bivariate problem. General properties of these methods are outlined, and applications to more complex missing-data problems are discussed. The EM algorithm, a convenient method for computing maximum likelihood estimates in missing-data problems, is described and applied to two common models, the multivariate normal model for continuous data and the multinomial model for discrete data. Multiple imputation under explicit or implicit models is recommended as a method that retains the advantages of imputation and overcomes its limitations.

Suggested Citation

  • Roderick J. A. Little & Donald B. Rubin, 1989. "The Analysis of Social Science Data with Missing Values," Sociological Methods & Research, , vol. 18(2-3), pages 292-326, November.
  • Handle: RePEc:sae:somere:v:18:y:1989:i:2-3:p:292-326
    DOI: 10.1177/0049124189018002004
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124189018002004
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124189018002004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    2. Rubin, Donald B, 1986. "Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 87-94, January.
    3. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 300-301, July.
    4. Bengt Muthén & David Kaplan & Michael Hollis, 1987. "On structural equation modeling with data that are not missing completely at random," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 431-462, September.
    5. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    6. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Craig, Shelley L. & Austin, Ashley, 2016. "The AFFIRM open pilot feasibility study: A brief affirmative cognitive behavioral coping skills group intervention for sexual and gender minority youth," Children and Youth Services Review, Elsevier, vol. 64(C), pages 136-144.
    2. Caccavale, Oscar Maria & Giuffrida, Valerio, 2020. "The Proteus composite index: Towards a better metric for global food security," World Development, Elsevier, vol. 126(C).
    3. Gabriella Melis & Mark Elliot & Nick Shryane, 2014. "Environmental Concern Over Time: Evidence from the Longitudinal Analysis of a British Cohort Study from 1991 to 2008," Social Science Quarterly, Southwestern Social Science Association, vol. 95(4), pages 905-919, December.
    4. Di Gessa, Giorgio & Glaser, Karen & Tinker, Anthea, 2016. "The impact of caring for grandchildren on the health of grandparents in Europe: A lifecourse approach," Social Science & Medicine, Elsevier, vol. 152(C), pages 166-175.
    5. Volker Lang, 2017. "Twin data analysis with ACE-decomposed explanatory variables using Stata," German Stata Users' Group Meetings 2017 06, Stata Users Group.
    6. Kjellstrand, Jean M. & Reinke, Wendy M. & Eddy, J. Mark, 2018. "Children of incarcerated parents: Development of externalizing behaviors across adolescence," Children and Youth Services Review, Elsevier, vol. 94(C), pages 628-635.
    7. Eddie Chi Wai Ng & Adrian T. Fisher, 2016. "Protestant Spirituality and Well-Being of People in Hong Kong: The Mediating Role of Sense of Community," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 11(4), pages 1253-1267, December.
    8. Vada, Sera & Prentice, Catherine & Hsiao, Aaron, 2019. "The role of positive psychology in tourists’ behavioural intentions," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 293-303.
    9. Cooklin, A.R. & Dinh, H. & Strazdins, L. & Westrupp, E. & Leach, L.S. & Nicholson, J.M., 2016. "Change and stability in work–family conflict and mothers' and fathers' mental health: Longitudinal evidence from an Australian cohort," Social Science & Medicine, Elsevier, vol. 155(C), pages 24-34.
    10. Glenn B. Voss & Zannie Giraud Voss, 2013. "Strategic Ambidexterity in Small and Medium-Sized Enterprises: Implementing Exploration and Exploitation in Product and Market Domains," Organization Science, INFORMS, vol. 24(5), pages 1459-1477, October.
    11. Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
    12. Michael S. Rendall & Bonnie Ghosh-Dastidar & Margaret M. Weden & Zafar Nazarov, 2011. "Multiple Imputation for Combined-Survey Estimation With Incomplete Regressors In One But Not Both Surveys," Working Papers WR-887-1, RAND Corporation.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Discussion Paper 1992-7, Tilburg University, Center for Economic Research.
    2. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    3. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    4. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Other publications TiSEM 65401dae-613b-4e10-a8ae-c, Tilburg University, School of Economics and Management.
    5. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    6. Westermeier, Christian & Grabka, Markus M., 2016. "Longitudinal Wealth Data and Multiple Imputation: An Evaluation Study," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(3), pages 237-252.
    7. Arif Mamun & David Wittenburg & Noelle Denny-Brown & Michael Levere & David Mann & Rebecca Coughlin & Sarah Croake & Heather Gordon & Denise Hoffman & Rachel Holzwart & Rosalind Keith & Brittany McGil, "undated". "Promoting Opportunity Demonstration: Interim Evaluation Report," Mathematica Policy Research Reports caa99d38a8b14f968ea3438e5, Mathematica Policy Research.
    8. Baltussen, Guido & Swinkels, Laurens & Van Vliet, Pim, 2021. "Global factor premiums," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1128-1154.
    9. Sean Mc Auliffe & Georg U. Thunecke & Georg Wamser, 2023. "The Tax-Elasticity of Tangible Fixed Assets: Evidence from Novel Corporate Tax Data," CESifo Working Paper Series 10628, CESifo.
    10. Leonie C. Steckermeier & Jan Delhey, 2019. "Better for Everyone? Egalitarian Culture and Social Wellbeing in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(3), pages 1075-1108, June.
    11. Saeideh Kamgar & Florian Meinfelder & Ralf Münnich & Hamidreza Navvabpour, 2020. "Estimation within the new integrated system of household surveys in Germany," Statistical Papers, Springer, vol. 61(5), pages 2091-2117, October.
    12. Filippo Battistoni & Marco Martinez, 2022. "Rome and the Polis: Tradition and Change in the Financial Accounts of Tauromenion, 1st Century B.C," Annals of the Fondazione Luigi Einaudi. An Interdisciplinary Journal of Economics, History and Political Science, Fondazione Luigi Einaudi, Torino (Italy), vol. 56(1), pages 149-176, June.
    13. Jana Emmenegger & Ralf Münnich & Jannik Schaller, 2022. "Evaluating Data Fusion Methods to Improve Income Modelling," Research Papers in Economics 2022-03, University of Trier, Department of Economics.
    14. Olinsky, Alan & Chen, Shaw & Harlow, Lisa, 2003. "The comparative efficacy of imputation methods for missing data in structural equation modeling," European Journal of Operational Research, Elsevier, vol. 151(1), pages 53-79, November.
    15. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    16. Chenyang Gu & Roee Gutman, 2017. "Combining item response theory with multiple imputation to equate health assessment questionnaires," Biometrics, The International Biometric Society, vol. 73(3), pages 990-998, September.
    17. Chia-Ning Wang & Roderick Little & Bin Nan & Siobán D. Harlow, 2011. "A Hot-Deck Multiple Imputation Procedure for Gaps in Longitudinal Recurrent Event Histories," Biometrics, The International Biometric Society, vol. 67(4), pages 1573-1582, December.
    18. Matthias von Davier & Youngmi Cho & Tianshu Pan, 2019. "Effects of Discontinue Rules on Psychometric Properties of Test Scores," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 147-163, March.
    19. Morris A. Davis & William D. Larson & Stephen D. Oliner & Benjamin Smith, 2019. "Mortgage Risk Since 1990," FHFA Staff Working Papers 19-02, Federal Housing Finance Agency.
    20. Fernandes, Mario & Hilber, Simon & Sturm, Jan-Egbert & Walter, Andreas, 2023. "Closing the gender gap in academia? Evidence from an affirmative action program," Research Policy, Elsevier, vol. 52(9).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:18:y:1989:i:2-3:p:292-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.