IDEAS home Printed from https://ideas.repec.org/p/erm/papers/0710.html
   My bibliography  Save this paper

Forecasting with Spatial Panel Data

Author

Listed:
  • BALTAGI B-H
  • BRESSON G.
  • PIROTTE A.

Abstract

Various forecasts using panel data with spatial error correlation are compared using Monte Carlo experiments. The true data generating process is assumed to be a simple error component regression model with spatial remainder disturbances of the autoregressive or moving average type. The best linear unbiased predictor is compared with other forecasts ignoring spatial correlation, or ignoring heterogeneity due to the individual effects. In addition, the root mean squared error performance of these forecasts is examined under misspecification of the spatial error process, various spatial weight matrices, and heterogeneous rather than homogeneous panel data models.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Baltagi B-H & Bresson G. & Pirotte A., 2007. "Forecasting with Spatial Panel Data," Working Papers ERMES 0710, ERMES, University Paris 2.
  • Handle: RePEc:erm:papers:0710
    as

    Download full text from publisher

    File URL: http://ermes.u-paris2.fr/doctrav/0710
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Bernard Fingleton, 2008. "A Generalized Method of Moments Estimator for a Spatial Panel Model with an Endogenous Spatial Lag and Spatial Moving Average Errors," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(1), pages 27-44.
    3. Hoogstrate, Andre J & Palm, Franz C & Pfann, Gerard A, 2000. "Pooling in Dynamic Panel-Data Models: An Application to Forecasting GDP Growth Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 274-283, July.
    4. Georges Bresson & Badi H. Baltagi & Alain Pirotte, 2007. "Panel unit root tests and spatial dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 339-360.
    5. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    6. Hsiao,Cheng & Pesaran,M. Hashem & Lahiri,Kajal & Lee,Lung Fei (ed.), 1999. "Analysis of Panels and Limited Dependent Variable Models," Cambridge Books, Cambridge University Press, number 9780521631693, January.
    7. Bernard Fingleton, 2009. "A generalized method of moments estimator for a spatial model with moving average errors, with application to real estate prices," Studies in Empirical Economics, in: Giuseppe Arbia & Badi H. Baltagi (ed.), Spatial Econometrics, pages 35-57, Springer.
    8. Kajal Lahiri, 2005. "Analysis of Panel Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1093-1095.
    9. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    10. Anselin, Luc & Moreno, Rosina, 2003. "Properties of tests for spatial error components," Regional Science and Urban Economics, Elsevier, vol. 33(5), pages 595-618, September.
    11. Baillie, R.T. & Baltagi, B.H., 1994. "Prediction from the Regression Model with one-way Error Components," Papers 9405, Michigan State - Econometrics and Economic Theory.
    12. Nerlove, Marc, 1971. "Further Evidence on the Estimation of Dynamic Economic Relations from a Time Series of Cross Sections," Econometrica, Econometric Society, vol. 39(2), pages 359-382, March.
    13. Badi H. Baltagi & Georges Bresson & Alain Pirotte, 2004. "Tobin q: Forecast performance for hierarchical Bayes, shrinkage, heterogeneous and homogeneous panel data estimators," Empirical Economics, Springer, vol. 29(1), pages 107-113, January.
    14. Baltagi, Badi H. & Griffin, James M., 1997. "Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline," Journal of Econometrics, Elsevier, vol. 77(2), pages 303-327, April.
    15. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1.
    16. Badi Baltagi & Dong Li, 2006. "Prediction in the Panel Data Model with Spatial Correlation: the Case of Liquor," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(2), pages 175-185.
    17. Herbert Brücker & Boriss Siliverstovs, 2006. "On the estimation and forecasting of international migration: how relevant is heterogeneity across countries?," Empirical Economics, Springer, vol. 31(3), pages 735-754, September.
    18. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2002. "Comparison of forecast performance for homogeneous, heterogeneous and shrinkage estimators: Some empirical evidence from US electricity and natural-gas consumption," Economics Letters, Elsevier, vol. 76(3), pages 375-382, August.
    19. Richard Schmalensee & Thomas M. Stoker & Ruth A. Judson, 1998. "World Carbon Dioxide Emissions: 1950-2050," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 15-27, February.
    20. Badi H. Baltagi & Dong Li, 2004. "Prediction in the Panel Data Model with Spatial Correlation," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 13, pages 283-295, Springer.
    21. Rapach, David E. & Wohar, Mark E., 2004. "Testing the monetary model of exchange rate determination: a closer look at panels," Journal of International Money and Finance, Elsevier, vol. 23(6), pages 867-895, October.
    22. Badi H. Baltagi & James M. Griffin & Weiwen Xiong, 2000. "To Pool Or Not To Pool: Homogeneous Versus Hetergeneous Estimations Applied to Cigarette Demand," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 117-126, February.
    23. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    24. Frees, Edward W. & Miller, Thomas W., 2004. "Sales forecasting using longitudinal data models," International Journal of Forecasting, Elsevier, vol. 20(1), pages 99-114.
    25. ,, 2002. "The Et Interview: Professor Phoebus J. Dhrymes," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1221-1272, October.
    26. Taub, Allan J., 1979. "Prediction in the context of the variance-components model," Journal of Econometrics, Elsevier, vol. 10(1), pages 103-107, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    2. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
    3. Baltagi, Badi H. & Pirotte, Alain, 2010. "Panel data inference under spatial dependence," Economic Modelling, Elsevier, vol. 27(6), pages 1368-1381, November.
    4. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
    5. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019. "A time-space dynamic panel data model with spatial moving average errors," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
    6. Herbert Brücker & Boriss Siliverstovs, 2006. "On the estimation and forecasting of international migration: how relevant is heterogeneity across countries?," Empirical Economics, Springer, vol. 31(3), pages 735-754, September.
    7. Alain Pirotte & Jean-Loup Madre, 2011. "Determinants of Urban Sprawl in France," Urban Studies, Urban Studies Journal Limited, vol. 48(13), pages 2865-2886, October.
    8. Massimiliano Mazzanti & Antonio Musolesi, 2010. "Carbon Abatement Leaders and Laggards Non Parametric Analyses of Policy Oriented Kuznets Curves," Working Papers 2010.149, Fondazione Eni Enrico Mattei.
    9. Ana Angulo & F. Trívez, 2010. "The impact of spatial elements on the forecasting of Spanish labour series," Journal of Geographical Systems, Springer, vol. 12(2), pages 155-174, June.
    10. Baltagi, Badi H. & Pirotte, Alain, 2014. "Prediction in a spatial nested error components panel data model," International Journal of Forecasting, Elsevier, vol. 30(3), pages 407-414.
    11. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    12. repec:zbw:bofitp:2010_015 is not listed on IDEAS
    13. Giovanni Bella & Carla Massidda & Ivan Etzo, 2013. "A Panel Estimation of the Relationship between Income, Electric Power Consumption and CO2 Emissions," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 59(2), pages 149-166.
    14. Akgun, Oguzhan & Pirotte, Alain & Urga, Giovanni, 2020. "Forecasting using heterogeneous panels with cross-sectional dependence," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1211-1227.
    15. Massimiliano Mazzanti & Antonio Musolesi, 2011. "Income and time related effects in EKC," Working Papers 201105, University of Ferrara, Department of Economics.
    16. Trapani, Lorenzo & Urga, Giovanni, 2009. "Optimal forecasting with heterogeneous panels: A Monte Carlo study," International Journal of Forecasting, Elsevier, vol. 25(3), pages 567-586, July.
    17. repec:asg:wpaper:1013 is not listed on IDEAS
    18. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    19. Baltagi, Badi H. & Liu, Long, 2013. "Estimation and prediction in the random effects model with AR(p) remainder disturbances," International Journal of Forecasting, Elsevier, vol. 29(1), pages 100-107.
    20. Eric Girardin & Konstantin A. Kholodilin, 2011. "How helpful are spatial effects in forecasting the growth of Chinese provinces?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 622-643, November.
    21. Nina Vujanovic & Bruno Casella & Richard Bolwijn, . "Forecasting global FDI: a panel data approach," UNCTAD Transnational Corporations Journal, United Nations Conference on Trade and Development.
    22. Eric Girardin & Konstantin A. Kholodilin, 2011. "How helpful are spatial effects in forecasting the growth of Chinese provinces?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 622-643, November.

    More about this item

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:erm:papers:0710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ermp2fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.