IDEAS home Printed from https://ideas.repec.org/h/spr/stecpp/978-3-7908-2070-6_3.html
   My bibliography  Save this book chapter

A generalized method of moments estimator for a spatial model with moving average errors, with application to real estate prices

In: Spatial Econometrics

Author

Listed:
  • Bernard Fingleton

    (Cambridge University)

Abstract

This paper proposes a new GMM estimator for spatial regression models with moving average errors. Monte Carlo results are given which suggest that the GMM estimates are consistent and robust to non-normality, and the Bootstrap method is suggested as a way of testing the significance of the moving average parameter. The estimator is applied in a model of English real estate prices, in which the concepts of displaced demand and displaced supply are introduced to derive the spatial lag of prices, and the moving average error process represents spatially autocorrelated unmodelled variables.

Suggested Citation

  • Bernard Fingleton, 2009. "A generalized method of moments estimator for a spatial model with moving average errors, with application to real estate prices," Studies in Empirical Economics, in: Giuseppe Arbia & Badi H. Baltagi (ed.), Spatial Econometrics, pages 35-57, Springer.
  • Handle: RePEc:spr:stecpp:978-3-7908-2070-6_3
    DOI: 10.1007/978-3-7908-2070-6_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kelejian, Harry H. & Prucha, Ingmar R., 2004. "Estimation of simultaneous systems of spatially interrelated cross sectional equations," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 27-50.
    2. Gibbons, Steve & Machin, Stephen, 2003. "Valuing English primary schools," Journal of Urban Economics, Elsevier, vol. 53(2), pages 197-219, March.
    3. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    2. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    3. Arnab Bhattacharjee & Sean Holly, 2013. "Understanding Interactions in Social Networks and Committees," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(1), pages 23-53, March.
    4. Álvarez, Inmaculada C. & Barbero, Javier & Zofío, José L., 2017. "A Panel Data Toolbox for MATLAB," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i06).
    5. Bernard Fingleton & Julie Le Gallo, 2008. "Estimating spatial models with endogenous variables, a spatial lag and spatially dependent disturbances: Finite sample properties," Papers in Regional Science, Wiley Blackwell, vol. 87(3), pages 319-339, August.
    6. Gebremeskel H. Gebremariam & Tesfa G. Gebremedhin & Peter V. Schaeffer & Randall W. Jackson, 2008. "A Simultaneous Spatial Panel Data Model of Regional Growth Variation: An Empirical Analysis of Employment, Income, Migration and Local Public Services," Working Papers e07-12, Virginia Polytechnic Institute and State University, Department of Economics.
    7. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2018. "Generalized spatial autocorrelation in a panel-probit model with an application to exporting in China," Empirical Economics, Springer, vol. 55(1), pages 193-211, August.
    8. Silvia Palombi & Roger Perman & Christophe Tavéra, 2017. "Commuting effects in Okun's Law among British areas: Evidence from spatial panel econometrics," Papers in Regional Science, Wiley Blackwell, vol. 96(1), pages 191-209, March.
    9. Bonanno, Alessandro & Ghosh, Gaurav S., 2010. "SNAP Efficacy and Food Access – A Nationwide Spatial Analysis," 115th Joint EAAE/AAEA Seminar, September 15-17, 2010, Freising-Weihenstephan, Germany 116437, European Association of Agricultural Economists.
    10. AMBA OYON, Claude Marius & Mbratana, Taoufiki, 2018. "Simultaneous Generalized Method of Moments Estimator for Panel Data Models with Spatially Correlated Error Components," MPRA Paper 84746, University Library of Munich, Germany.
    11. Kelejian, Harry H. & Piras, Gianfranco, 2014. "Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 140-149.
    12. Arnab Bhattacharjee & Sean Holly, 2011. "Structural interactions in spatial panels," Empirical Economics, Springer, vol. 40(1), pages 69-94, February.
    13. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    14. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    15. Yoojin Yi & Euijune Kim & Eunjin Choi, 2017. "Linkage among School Performance, Housing Prices, and Residential Mobility," Sustainability, MDPI, vol. 9(6), pages 1-18, June.
    16. AMBA OYON, Claude Marius & Mbratana, Taoufiki, 2017. "Simultaneous equation models with spatially autocorrelated error components," MPRA Paper 82395, University Library of Munich, Germany.
    17. repec:rri:wpaper:201302 is not listed on IDEAS
    18. Levi, Sebastian & Goldberg, Matthew H., 2021. "Democracy influences climate change concern," SocArXiv 6vk9d, Center for Open Science.
    19. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    20. repec:asg:wpaper:1013 is not listed on IDEAS
    21. Escobar Gamboa, Octavio Romano, 2009. "IDE entrants, exportations et productivité manufacturière : les différentes performances des régions mexicaines," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/3850 edited by Guillochon, Bernard.
    22. Wang, Wei & Lee, Lung-Fei & Bao, Yan, 2018. "GMM estimation of the spatial autoregressive model in a system of interrelated networks," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 167-198.

    More about this item

    Keywords

    Moving averages; GMM; Real estate; Spatial econometrics;
    All these keywords.

    JEL classification:

    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stecpp:978-3-7908-2070-6_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.