IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/15910.html
   My bibliography  Save this paper

Determination of Attribute Weights for Recommender Systems Based on Product Popularity

Author

Listed:
  • Kagie, M.
  • van Wezel, M.C.
  • Groenen, P.J.F.

Abstract

In content- and knowledge-based recommender systems often a measure of (dis)similarity between products is used. Frequently, this measure is based on the attributes of the products. However, which attributes are important for the users of the system remains an important question to answer. In this paper, we present two approaches to determine attribute weights in a dissimilarity measure based on product popularity. We count how many times products are sold and based on this, we create two models to determine attribute weights: a Poisson regression model and a novel boosting model minimizing Poisson deviance. We evaluate these two models in two ways, namely using a clickstream analysis on four different product catalogs and a user experiment. The clickstream analysis shows that for each product catalog the standard equal weights model is outperformed by at least one of the weighting models. The user experiment shows that users seem to have a different notion of product similarity in an experimental context.

Suggested Citation

  • Kagie, M. & van Wezel, M.C. & Groenen, P.J.F., 2009. "Determination of Attribute Weights for Recommender Systems Based on Product Popularity," ERIM Report Series Research in Management ERS-2009-022-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:15910
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/15910/ERS-2009-022-MKT.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kagie, M. & van Wezel, M.C. & Groenen, P.J.F., 2007. "A graphical shopping interface bases on product attributes," Econometric Institute Research Papers EI 2007-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz & Amy H. Herring, 2005. "Missing-Data Methods for Generalized Linear Models: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 332-346, March.
    3. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    4. King, Gary & Honaker, James & Joseph, Anne & Scheve, Kenneth, 2001. "Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation," American Political Science Review, Cambridge University Press, vol. 95(1), pages 49-69, March.
    5. Kagie, M. & van Wezel, M.C. & Groenen, P.J.F., 2008. "Choosing Attribute Weights for Item Dissimilarity using Clikstream Data with an Application to a Product Catalog Map," ERIM Report Series Research in Management ERS-2008-024-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kagie, M. & van Wezel, M.C. & Groenen, P.J.F., 2009. "An Empirical Comparison of Dissimilarity Measures for Recommender Systems," ERIM Report Series Research in Management ERS-2009-023-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kagie, M. & van Wezel, M.C. & Groenen, P.J.F., 2009. "Map Based Visualization of Product Catalogs," ERIM Report Series Research in Management ERS-2009-010-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Kagie, M. & van Wezel, M.C. & Groenen, P.J.F., 2009. "An Empirical Comparison of Dissimilarity Measures for Recommender Systems," ERIM Report Series Research in Management ERS-2009-023-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2021. "On the Treatment of Missing Data in Background Questionnaires in Educational Large-Scale Assessments: An Evaluation of Different Procedures," Journal of Educational and Behavioral Statistics, , vol. 46(4), pages 430-465, August.
    4. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2019. "Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data," Econometrics, MDPI, vol. 7(3), pages 1-27, September.
    5. R Florez-Lopez, 2010. "Effects of missing data in credit risk scoring. A comparative analysis of methods to achieve robustness in the absence of sufficient data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 486-501, March.
    6. Scott Gehlbach & Konstantin Sonin & Ekaterina Zhuravskaya, 2010. "Businessman Candidates," American Journal of Political Science, John Wiley & Sons, vol. 54(3), pages 718-736, July.
    7. Oliver Hinz & Jochen Eckert, 2010. "The Impact of Search and Recommendation Systems on Sales in Electronic Commerce," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 67-77, April.
    8. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    9. Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
    10. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    11. Ihle, R. & Amikuzuno, J. & von Cramon-Taubadel, S. & Zorya, S., 2010. "Grenzeffekte in der Marktintegration bei Mais in Ostafrika: Einsichten aus einem semi-parametrischen Regressionsmodell," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 45, March.
    12. Joanna Sokolowska & Patrycja Sleboda, 2015. "The Inverse Relation Between Risks and Benefits: The Role of Affect and Expertise," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1252-1267, July.
    13. Donald R. Haurin & Stuart S. Rosenthal, 2009. "Language, Agglomeration and Hispanic Homeownership," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 155-183, June.
    14. Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Overview and Applications," Sociological Methods & Research, , vol. 46(3), pages 303-341, August.
    15. Vincent Bauer & Keven Ruby & Robert Pape, 2017. "Solving the Problem of Unattributed Political Violence," Journal of Conflict Resolution, Peace Science Society (International), vol. 61(7), pages 1537-1564, August.
    16. Jong Won Min, 2019. "The Influence of Stigma and Views on Mental Health Treatment Effectiveness on Service Use by Age and Ethnicity: Evidence From the CDC BRFSS 2007, 2009, and 2012," SAGE Open, , vol. 9(3), pages 21582440198, September.
    17. Zhan (Michael) Shi & T. S. Raghu, 2020. "An Economic Analysis of Product Recommendation in the Presence of Quality and Taste-Match Heterogeneity," Information Systems Research, INFORMS, vol. 31(2), pages 399-411, June.
    18. Paul Poast, 2013. "Issue linkage and international cooperation: An empirical investigation," Conflict Management and Peace Science, Peace Science Society (International), vol. 30(3), pages 286-303, July.
    19. Voxi Amavilah & Antonio R. Andrés, 2014. "Globalization, Peace & Stability, Governance, and Knowledge Economy," Research Africa Network Working Papers 14/012, Research Africa Network (RAN).
    20. Cohen, Joseph N, 2010. "Neoliberalism’s relationship with economic growth in the developing world: Was it the power of the market or the resolution of financial crisis?," MPRA Paper 24527, University Library of Munich, Germany.

    More about this item

    Keywords

    attribute weights; boosting; dissimilarity measures; evaluation; poisson regression; recommender systems;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:15910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.