IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/13837.html
   My bibliography  Save this paper

How Much is Location Information Worth? A Competitive Analysis of the Online Traveling Salesman Problem with Two Disclosure Dates

Author

Listed:
  • Srour, F.J.
  • Zuidwijk, R.A.

Abstract

In this paper we derive the worst-case ratio of an online algorithm for the Traveling Salesman Problem (TSP) with two disclosure dates. This problem, a variant of the online TSP with release dates, is characterized by the disclosure of a job’s location at one point in time followed by the disclosure of that job’s release date at a later point in time. We present an online algorithm for this problem restricted to the positive real number line. We then derive the worst-case ratio of our algorithm and show that it is best-possible in two contexts – the first, one in which the amount of time between the disclosure events and release time are fixed and equal for all jobs; and a second in which the time between disclosure events varies for each job. We conclude that the value of advanced information can be attributed to the location information alone – yielding an optimal solution in favorable instances.

Suggested Citation

  • Srour, F.J. & Zuidwijk, R.A., 2008. "How Much is Location Information Worth? A Competitive Analysis of the Online Traveling Salesman Problem with Two Disclosure Dates," ERIM Report Series Research in Management ERS-2008-075-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:13837
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/13837/ERS-2008-075-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Jaillet & Michael R. Wagner, 2006. "Online Routing Problems: Value of Advanced Information as Improved Competitive Ratios," Transportation Science, INFORMS, vol. 40(2), pages 200-210, May.
    2. Merrill M. Flood, 1956. "The Traveling-Salesman Problem," Operations Research, INFORMS, vol. 4(1), pages 61-75, February.
    3. Michiel Blom & Sven O. Krumke & Willem E. de Paepe & Leen Stougie, 2001. "The Online TSP Against Fair Adversaries," INFORMS Journal on Computing, INFORMS, vol. 13(2), pages 138-148, May.
    4. Harilaos N. Psaraftis & Marius M. Solomon & Thomas L. Magnanti & Tai-Up Kim, 1990. "Routing and Scheduling on a Shoreline with Release Times," Management Science, INFORMS, vol. 36(2), pages 212-223, February.
    5. M. Bellmore & G. L. Nemhauser, 1968. "The Traveling Salesman Problem: A Survey," Operations Research, INFORMS, vol. 16(3), pages 538-558, June.
    6. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rob A. Zuidwijk & Albert W. Veenstra, 2015. "The Value of Information in Container Transport," Transportation Science, INFORMS, vol. 49(3), pages 675-685, August.
    2. F. Jordan Srour & Niels Agatz & Johan Oppen, 2018. "Strategies for Handling Temporal Uncertainty in Pickup and Delivery Problems with Time Windows," Transportation Science, INFORMS, vol. 52(1), pages 3-19, January.
    3. Srour, F.J. & Agatz, N.A.H. & Oppen, J., 2014. "Strategies for Handling Temporal Uncertainty in Pickup and Delivery Problems with Time Windows," ERIM Report Series Research in Management ERS-2014-015-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Patrick Jaillet & Michael R. Wagner, 2006. "Online Routing Problems: Value of Advanced Information as Improved Competitive Ratios," Transportation Science, INFORMS, vol. 40(2), pages 200-210, May.
    3. Patrick Jaillet & Michael R. Wagner, 2008. "Generalized Online Routing: New Competitive Ratios, Resource Augmentation, and Asymptotic Analyses," Operations Research, INFORMS, vol. 56(3), pages 745-757, June.
    4. Doppstadt, C. & Koberstein, A. & Vigo, D., 2016. "The Hybrid Electric Vehicle – Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 825-842.
    5. Shiri, Davood & Akbari, Vahid & Hassanzadeh, Ali, 2024. "The Capacitated Team Orienteering Problem: An online optimization framework with predictions of unknown accuracy," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    6. G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
    7. Khan, W. A. & Hayhurst, D. R. & Cannings, C., 1999. "Determination of optimal path under approach and exit constraints," European Journal of Operational Research, Elsevier, vol. 117(2), pages 310-325, September.
    8. Zhouchun Huang & Qipeng Phil Zheng & Eduardo Pasiliao & Vladimir Boginski & Tao Zhang, 2019. "A cutting plane method for risk-constrained traveling salesman problem with random arc costs," Journal of Global Optimization, Springer, vol. 74(4), pages 839-859, August.
    9. Xingang Wen & Yinfeng Xu & Huili Zhang, 2015. "Online traveling salesman problem with deadlines and service flexibility," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 545-562, October.
    10. Lisa K. Fleischer & Adam N. Letchford & Andrea Lodi, 2006. "Polynomial-Time Separation of a Superclass of Simple Comb Inequalities," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 696-713, November.
    11. Lei, Chao & Ouyang, Yanfeng, 2024. "Average minimum distance to visit a subset of random points in a compact region," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    12. Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
    13. Yuanxiao Wu & Xiwen Lu, 0. "Improved algorithms for single vehicle scheduling on tree/cycle networks," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-16.
    14. Olcay Polat & Duygu Topaloğlu, 2022. "Collection of different types of milk with multi-tank tankers under uncertainty: a real case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-33, April.
    15. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    16. Kusum Deep & Hadush Mebrahtu & Atulya K. Nagar, 2018. "Novel GA for metropolitan stations of Indian railways when modelled as a TSP," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(3), pages 639-645, June.
    17. Stock-Williams, Clym & Swamy, Siddharth Krishna, 2019. "Automated daily maintenance planning for offshore wind farms," Renewable Energy, Elsevier, vol. 133(C), pages 1393-1403.
    18. Furini, Fabio & Persiani, Carlo Alfredo & Toth, Paolo, 2016. "The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 38-55.
    19. Zhang, Huili & Tong, Weitian & Xu, Yinfeng & Lin, Guohui, 2015. "The Steiner Traveling Salesman Problem with online edge blockages," European Journal of Operational Research, Elsevier, vol. 243(1), pages 30-40.
    20. Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.

    More about this item

    Keywords

    advanced information; competitive ratio; online routing; traveling salesman; worst-case ratio;
    All these keywords.

    JEL classification:

    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:13837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.