Forecasting high-frequency electricity demand with a diffusion index model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
- Inoue, Atsushi & Kilian, Lutz, 2006.
"On the selection of forecasting models,"
Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
- Kilian, Lutz & Inoue, Atsushi, 2003. "On the Selection of Forecasting Models," CEPR Discussion Papers 3809, C.E.P.R. Discussion Papers.
- Inoue, Atsushi & Kilian, Lutz, 2003. "On the selection of forecasting models," Working Paper Series 214, European Central Bank.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
- Andrews, Donald W K, 1991.
"Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation,"
Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
- Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
- Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877, Cowles Foundation for Research in Economics, Yale University.
- Jean Boivin & Serena Ng, 2005.
"Understanding and Comparing Factor-Based Forecasts,"
International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
- Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," NBER Working Papers 11285, National Bureau of Economic Research, Inc.
- Boivin, Jean & Ng, Serena, 2005. "Understanding and Comparing Factor-Based Forecasts," MPRA Paper 836, University Library of Munich, Germany.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Osborn, Denise R, et al, 1988. "Seasonality and the Order of Integration for Consumption," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(4), pages 361-377, November.
- Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
- Franses, Philip Hans, 1994. "A multivariate approach to modeling univariate seasonal time series," Journal of Econometrics, Elsevier, vol. 63(1), pages 133-151, July.
- Hansen, Lars Peter & Sargent, Thomas J., 1993. "Seasonality and approximation errors in rational expectations models," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 21-55.
- Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mu-Chun Wang, 2009.
"Comparing the DSGE model with the factor model: an out-of-sample forecasting experiment,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 167-182.
- Wang, Mu-Chun, 2008. "Comparing the DSGE model with the factor model: an out-of-sample forecasting experiment," Discussion Paper Series 1: Economic Studies 2008,04, Deutsche Bundesbank.
- Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014.
"Using large data sets to forecast sectoral employment,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 201101, University of Pretoria, Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working papers 2011-02, University of Connecticut, Department of Economics, revised Aug 2012.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 1106, University of Nevada, Las Vegas , Department of Economics.
- Jörg Breitung & In Choi, 2013.
"Factor models,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 11, pages 249-265,
Edward Elgar Publishing.
- In Choi & Jorg Breitung, 2011. "Factor models," Working Papers 1121, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Dec 2011.
- Huang, Huichou & MacDonald, Ronald & Zhao, Yang, 2012. "Global Currency Misalignments, Crash Sensitivity, and Downside Insurance Costs," MPRA Paper 53745, University Library of Munich, Germany, revised 18 Nov 2013.
- Christian Schumacher, 2007.
"Forecasting German GDP using alternative factor models based on large datasets,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
- Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank.
- Helmut Lütkepohl, 2014.
"Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey,"
Discussion Papers of DIW Berlin
1351, DIW Berlin, German Institute for Economic Research.
- Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015.
"Risks of large portfolios,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
- Jianqing Fan & Yuan Liao & Xiaofeng Shi, 2013. "Risks of Large Portfolios," Papers 1302.0926, arXiv.org.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2013. "Risks of large portfolios," MPRA Paper 44206, University Library of Munich, Germany.
- Norman R. Swanson & Nii Ayi Armah, 2011. "Diffusion Index Models and Index Proxies: Recent Results and New Directions," Departmental Working Papers 201114, Rutgers University, Department of Economics.
- Barigozzi, Matteo & Trapani, Lorenzo, 2020.
"Sequential testing for structural stability in approximate factor models,"
Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
- Matteo Barigozzi & Lorenzo Trapani, 2017. "Sequential testing for structural stability in approximate factor models," Papers 1708.02786, arXiv.org, revised Mar 2020.
- Matteo Barigozzi & Lorenzo Trapani, 2018. "Sequential testing for structural stability in approximate factor models," Discussion Papers 18/04, University of Nottingham, Granger Centre for Time Series Econometrics.
- Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
- Nii Ayi Armah & Norman Swanson, 2010.
"Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
- Nii Ayi Armah & Norman R. Swanson, 2008. "Seeing inside the black box: Using diffusion index methodology to construct factor proxies in large scale macroeconomic time series environments," Working Papers 08-25, Federal Reserve Bank of Philadelphia.
- Norman R. Swanson & Nii Ayi Armah, 2011. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Largescale Macroeconomic Time Series Environments," Departmental Working Papers 201105, Rutgers University, Department of Economics.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
- Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014.
"Forecasting with factor-augmented error correction models,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
- Banerjee, Anindya & Marcellino, Massimiliano, 2008. "Factor-augmented Error Correction Models," CEPR Discussion Papers 6707, C.E.P.R. Discussion Papers.
- Anindya Banerjee & Massimiliano Marcellino, 2008. "Factor-augmented Error Correction Models," Economics Working Papers ECO2008/15, European University Institute.
- Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2010. "Forecasting with Factor-augmented Error Correction Models," CEPR Discussion Papers 7677, C.E.P.R. Discussion Papers.
- Igor Masten & Massimiliano Marcellino & Anindya Banerjeey, 2009. "Forecasting with Factor-augmented Error Correction Models," RSCAS Working Papers 2009/32, European University Institute.
- Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2009. "Forecasting with Factor-Augmented Error Correction Models," Discussion Papers 09-06r, Department of Economics, University of Birmingham.
- Anindya Banerjee & Massimiliano Marcellino, 2008. "Factor-augmented Error Correction Models," Working Papers 335, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Moench, Emanuel, 2008.
"Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach,"
Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
- Mönch, Emanuel, 2005. "Forecasting the yield curve in a data-rich environment: a no-arbitrage factor-augmented VAR approach," Working Paper Series 544, European Central Bank.
- Hallin, Marc & Lippi, Marco, 2013.
"Factor models in high-dimensional time series—A time-domain approach,"
Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2678-2695.
- Marc Hallin & Marco Lippi, 2013. "Factor Models in High-Dimensional Time Series: A Time-Domain Approach," Working Papers ECARES ECARES 2013-15, ULB -- Universite Libre de Bruxelles.
- Tsionas, Mike G., 2016. "Parameters measuring bank risk and their estimation," European Journal of Operational Research, Elsevier, vol. 250(1), pages 291-304.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Kaufmann, Daniel & Scheufele, Rolf, 2017.
"Business tendency surveys and macroeconomic fluctuations,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
- Daniel Kaufmann & Rolf Scheufele, 2015. "Business tendency surveys and macroeconomic fluctuations," KOF Working papers 15-378, KOF Swiss Economic Institute, ETH Zurich.
More about this item
Keywords
diffusion index forecast; electricity load; seasonality;All these keywords.
JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:8001. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.