IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/525.html
   My bibliography  Save this paper

Entropic regularization approach for mathematical programs with equilibrium constraints

Author

Listed:
  • Birbil, S.I.
  • Fang, S-C.
  • Han, J.

Abstract

A new smoothing approach based on entropic perturbation is proposed for solving mathematical programs with equilibrium constraints. Some of the desirable properties of the smoothing function are shown. The viability of the proposed approach is supported by a computational study on a set of well-known test problems.

Suggested Citation

  • Birbil, S.I. & Fang, S-C. & Han, J., 2002. "Entropic regularization approach for mathematical programs with equilibrium constraints," Econometric Institute Research Papers EI 2002-52, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:525
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/525/feweco20030218114616.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaisak Suwansirikul & Terry L. Friesz & Roger L. Tobin, 1987. "Equilibrium Decomposed Optimization: A Heuristic for the Continuous Equilibrium Network Design Problem," Transportation Science, INFORMS, vol. 21(4), pages 254-263, November.
    2. Terry L. Friesz & Hsun-Jung Cho & Nihal J. Mehta & Roger L. Tobin & G. Anandalingam, 1992. "A Simulated Annealing Approach to the Network Design Problem with Variational Inequality Constraints," Transportation Science, INFORMS, vol. 26(1), pages 18-26, February.
    3. Xing-Si Li & Shu-Cherng Fang, 1997. "On the entropic regularization method for solving min-max problems with applications," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(1), pages 119-130, February.
    4. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Birbil, S.I. & Fang, S-C. & Han, J., 2002. "Entropic Regularization Approach for Mathematical Programs with Equilibrium Constraints," ERIM Report Series Research in Management ERS-2002-71-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    3. Li, Changmin & Yang, Hai & Zhu, Daoli & Meng, Qiang, 2012. "A global optimization method for continuous network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1144-1158.
    4. Yang, Hai & Bell, Michael G. H., 2001. "Transport bilevel programming problems: recent methodological advances," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 1-4, January.
    5. Diana P. Moreno-Palacio & Carlos A. Gonzalez-Calderon & John Jairo Posada-Henao & Hector Lopez-Ospina & Jhan Kevin Gil-Marin, 2022. "Entropy-Based Transit Tour Synthesis Using Fuzzy Logic," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
    6. Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    7. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    8. Satish Ukkusuri & S. Waller, 2008. "Linear Programming Models for the User and System Optimal Dynamic Network Design Problem: Formulations, Comparisons and Extensions," Networks and Spatial Economics, Springer, vol. 8(4), pages 383-406, December.
    9. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    10. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    11. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    12. Maher, Michael J. & Zhang, Xiaoyan & Vliet, Dirck Van, 2001. "A bi-level programming approach for trip matrix estimation and traffic control problems with stochastic user equilibrium link flows," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 23-40, January.
    13. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    14. Dung-Ying Lin & Ampol Karoonsoontawong & S. Waller, 2011. "A Dantzig-Wolfe Decomposition Based Heuristic Scheme for Bi-level Dynamic Network Design Problem," Networks and Spatial Economics, Springer, vol. 11(1), pages 101-126, March.
    15. Chiou, Suh-Wen, 2005. "Bilevel programming for the continuous transport network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 361-383, May.
    16. Clark, Stephen D. & Watling, David P., 2006. "Applications of sensitivity analysis for probit stochastic network equilibrium," European Journal of Operational Research, Elsevier, vol. 175(2), pages 894-911, December.
    17. Meng, Qiang & Yang, Hai, 2002. "Benefit distribution and equity in road network design," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 19-35, January.
    18. Bar-Gera, Hillel & Hellman, Fredrik & Patriksson, Michael, 2013. "Computational precision of traffic equilibria sensitivities in automatic network design and road pricing," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 485-500.
    19. Ukkusuri, Satish V. & Patil, Gopal, 2009. "Multi-period transportation network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 625-642, July.
    20. Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.