IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v46y1997i1p119-130.html
   My bibliography  Save this article

On the entropic regularization method for solving min-max problems with applications

Author

Listed:
  • Xing-Si Li
  • Shu-Cherng Fang

Abstract

Consider a min-max problem in the form of min xεX max 1≤i≤m {f i (x)}. It is well-known that the non-differentiability of the max functionF(x) ≡ max 1≤i≤m {f i (x)} presents difficulty in finding an optimal solution. An entropic regularization procedure provides a smooth approximationF p (x) that uniformly converges toF(x) overX with a difference bounded by ln(m)/p, forp > 0. In this way, withp being sufficiently large, minimizing the smooth functionF p (x) overX provides a very accurate solution to the min-max problem. The same procedure can be applied to solve systems of inequalities, linear programming problems, and constrained min-max problems. Copyright Physica-Verlag 1997

Suggested Citation

  • Xing-Si Li & Shu-Cherng Fang, 1997. "On the entropic regularization method for solving min-max problems with applications," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(1), pages 119-130, February.
  • Handle: RePEc:spr:mathme:v:46:y:1997:i:1:p:119-130
    DOI: 10.1007/BF01199466
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF01199466
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF01199466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chadi Nour & Vera Zeidan, 2024. "Numerical Method for a Controlled Sweeping Process with Nonsmooth Sweeping Set," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1385-1412, November.
    2. Helene Krieg & Tobias Seidel & Jan Schwientek & Karl-Heinz Küfer, 2022. "Solving continuous set covering problems by means of semi-infinite optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 39-82, August.
    3. Birbil, S.I. & Fang, S-C. & Han, J., 2002. "Entropic Regularization Approach for Mathematical Programs with Equilibrium Constraints," ERIM Report Series Research in Management ERS-2002-71-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. R. L. Sheu & S. Y. Wu, 1999. "Combined Entropic Regularization and Path-Following Method for Solving Finite Convex Min-max Problems Subject to Infinitely Many Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 101(1), pages 167-190, April.
    5. Alidaee, Bahram, 2014. "Zero duality gap in surrogate constraint optimization: A concise review of models," European Journal of Operational Research, Elsevier, vol. 232(2), pages 241-248.
    6. Fusheng Wang & Kecun Zhang, 2008. "A hybrid algorithm for nonlinear minimax problems," Annals of Operations Research, Springer, vol. 164(1), pages 167-191, November.
    7. Birbil, S.I. & Fang, S-C. & Han, J., 2002. "Entropic regularization approach for mathematical programs with equilibrium constraints," Econometric Institute Research Papers EI 2002-52, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Xide Zhu & Peijun Guo, 2017. "Approaches to four types of bilevel programming problems with nonconvex nonsmooth lower level programs and their applications to newsvendor problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 255-275, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:46:y:1997:i:1:p:119-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.