IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1353.html
   My bibliography  Save this paper

An Algorithm for Single-item Capacitated Economic Lot Sizing with Piecewise Linear Production Costs and General Holding Costs

Author

Listed:
  • Shaw, D.X.
  • Wagelmans, A.P.M.

Abstract

We consider the Capacitated Economic Lot Size problem with piecewise linear production costs and general holding costs, which is an NP-hard problem but solvable in pseudo-polynomial time. A straightforward dynamic programming approach to this problem results in an [TeX: $O(n^2 \\bar{c} \\bar{d} )$] algorithm, where [TeX: $n$] is the number of periods, and [TeX: $\\bar d$ and $\\bar c$] are the average demand and the average production capacity over the $n$ periods, respectively. However, we present a dynamic programming procedure with complexity [TeX: $O(n^2 \\bar{q} \\bar{d} )$], where [TeX: $\\bar q$] is the average number of pieces of the production cost functions. In particular, this means that problems in which the production functions consist of a fixed set-up cost plus a linear variable cost are solved in [TeX: $O(n^2 \\bar{d})$] time. Hence, the running time of our algorithm is only linearly dependent on the magnitude of the data. This result also holds if extensions such as backlogging and start-up costs are considered. Moreover, computational experiments indicate that the algorithm is capable of solving quite large problem instances within a reasonable amount of time. For example, the average time needed to solve test instances with 96 periods, 8 pieces in every production function and average demand of 100 units, is approximately 40 seconds on a SUN SPARC 5 workstation.

Suggested Citation

  • Shaw, D.X. & Wagelmans, A.P.M., 1995. "An Algorithm for Single-item Capacitated Economic Lot Sizing with Piecewise Linear Production Costs and General Holding Costs," Econometric Institute Research Papers EI 9526-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1353
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1353/1353.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chia-Shin Chung & Chien-Hua Mike Lin, 1988. "An O(T 2 ) Algorithm for the NI/G/NI/ND Capacitated Lot Size Problem," Management Science, INFORMS, vol. 34(3), pages 420-426, March.
    2. Arthur F. Veinott, Jr., 1964. "Production Planning with Convex Costs: A Parametric Study," Management Science, INFORMS, vol. 10(3), pages 441-460, April.
    3. Michael Florian & Morton Klein, 1971. "Deterministic Production Planning with Concave Costs and Capacity Constraints," Management Science, INFORMS, vol. 18(1), pages 12-20, September.
    4. Willard I. Zangwill, 1966. "A Deterministic Multi-Period Production Scheduling Model with Backlogging," Management Science, INFORMS, vol. 13(1), pages 105-119, September.
    5. Stephen F. Love, 1973. "Bounded Production and Inventory Models with Piecewise Concave Costs," Management Science, INFORMS, vol. 20(3), pages 313-318, November.
    6. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    7. van Hoesel, Stan & Wagelmans, Albert & Moerman, Bram, 1994. "Using geometric techniques to improve dynamic programming algorithms for the economic lot-sizing problem and extensions," European Journal of Operational Research, Elsevier, vol. 75(2), pages 312-331, June.
    8. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoesel C.P.M. van & Wagelmans A.P.M., 1997. "Fully polynomial approximation schemes for single-item capacitated economic lot-sizing problems," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    2. van Hoesel, C.P.M. & Wagelmans, A.P.M., 1997. "Fully Polynomial Approximation Schemes for Single-Item Capacitated Economic Lot-Sizing Problems," Econometric Institute Research Papers EI 9735/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. van Hoesel, C.P.M. & Wagelmans, A., 1997. "Fully polynomial approximation schemes for single-item capacitated economic lot-sizing problems," Research Memorandum 029, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Hoesel, C.P.M. & Wagelmans, A., 1997. "Fully polynomial approximation schemes for single-item capacitated economic lot-sizing problems," Research Memorandum 029, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    2. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    3. Alper Atamtürk & Dorit S. Hochbaum, 2001. "Capacity Acquisition, Subcontracting, and Lot Sizing," Management Science, INFORMS, vol. 47(8), pages 1081-1100, August.
    4. Hwang, Hark-Chin & Jaruphongsa, Wikrom, 2008. "Dynamic lot-sizing model for major and minor demands," European Journal of Operational Research, Elsevier, vol. 184(2), pages 711-724, January.
    5. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    6. Safer, Hershel M. & Orlin, James B., 1953-, 1995. "Fast approximation schemes for multi-criteria flow, knapsack, and scheduling problems," Working papers 3757-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    7. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    8. Hark‐Chin Hwang & Wilco van den Heuvel, 2012. "Improved algorithms for a lot‐sizing problem with inventory bounds and backlogging," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 244-253, April.
    9. Vernon Ning Hsu, 2000. "Dynamic Economic Lot Size Model with Perishable Inventory," Management Science, INFORMS, vol. 46(8), pages 1159-1169, August.
    10. Hark-Chin Hwang, 2010. "Economic Lot-Sizing for Integrated Production and Transportation," Operations Research, INFORMS, vol. 58(2), pages 428-444, April.
    11. Hark-Chin Hwang, 2009. "Inventory Replenishment and Inbound Shipment Scheduling Under a Minimum Replenishment Policy," Transportation Science, INFORMS, vol. 43(2), pages 244-264, May.
    12. van Hoesel, C.P.M. & Romeijn, H.E. & Romero Morales, M.D. & Wagelmans, A., 2002. "Polynomial time algorithms for some multi-level lot-sizing problems with production capacities," Research Memorandum 018, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    13. van Hoesel, C.P.M. & Wagelmans, A.P.M., 1997. "Fully Polynomial Approximation Schemes for Single-Item Capacitated Economic Lot-Sizing Problems," Econometric Institute Research Papers EI 9735/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. van den Heuvel, W.J. & Wagelmans, A.P.M., 2003. "A geometric algorithm to solve the NI/G/NI/ND capacitated lot-sizing problem in O(T2) time," Econometric Institute Research Papers EI 2003-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Hoesel C.P.M. van & Wagelmans A.P.M., 1997. "Fully polynomial approximation schemes for single-item capacitated economic lot-sizing problems," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    16. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    17. C. P. M. van Hoesel & A. P. M. Wagelmans, 2001. "Fully Polynomial Approximation Schemes for Single-Item Capacitated Economic Lot-Sizing Problems," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 339-357, May.
    18. Mathieu Van Vyve, 2007. "Algorithms for Single-Item Lot-Sizing Problems with Constant Batch Size," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 594-613, August.
    19. Jinwen Ou, 2012. "Economic lot sizing with constant capacities and concave inventory costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(7), pages 497-501, October.
    20. Ming Zhao & Minjiao Zhang, 2020. "Multiechelon Lot Sizing: New Complexities and Inequalities," Operations Research, INFORMS, vol. 68(2), pages 534-551, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.