IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v51y2005i11p1706-1719.html
   My bibliography  Save this article

Integrated Lot Sizing in Serial Supply Chains with Production Capacities

Author

Listed:
  • Stan van Hoesel

    (Faculty of Economics and Business Administration, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands)

  • H. Edwin Romeijn

    (Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall, P.O. Box 116595, Gainesville, Florida 32611-6595)

  • Dolores Romero Morales

    (Saïd Business School, University of Oxford, Park End Street, Oxford OX1 1HP, United Kingdom)

  • Albert P. M. Wagelmans

    (Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands)

Abstract

We consider a model for a serial supply chain in which production, inventory, and transportation decisions are integrated in the presence of production capacities and concave cost functions. The model we study generalizes the uncapacitated serial single-item multilevel economic lot-sizing model by adding stationary production capacities at the manufacturer level. We present algorithms with a running time that is polynomial in the planning horizon when all cost functions are concave. In addition, we consider different transportation and inventory holding cost structures that yield improved running times: inventory holding cost functions that are linear and transportation cost functions that are either linear, or are concave with a fixed-charge structure. In the latter case, we make the additional common and reasonable assumption that the variable transportation and inventory costs are such that holding inventories at higher levels in the supply chain is more attractive from a variable cost perspective. While the running times of the algorithms are exponential in the number of levels in the supply chain in the general concave cost case, the running times are remarkably insensitive to the number of levels for the other two cost structures.

Suggested Citation

  • Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
  • Handle: RePEc:inm:ormnsc:v:51:y:2005:i:11:p:1706-1719
    DOI: 10.1287/mnsc.1050.0378
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1050.0378
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1050.0378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chia-Shin Chung & Chien-Hua Mike Lin, 1988. "An O(T 2 ) Algorithm for the NI/G/NI/ND Capacitated Lot Size Problem," Management Science, INFORMS, vol. 34(3), pages 420-426, March.
    2. Albert Wagelmans & Stan van Hoesel & Antoon Kolen, 1992. "Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case," Operations Research, INFORMS, vol. 40(1-supplem), pages 145-156, February.
    3. Michael Florian & Morton Klein, 1971. "Deterministic Production Planning with Concave Costs and Capacity Constraints," Management Science, INFORMS, vol. 18(1), pages 12-20, September.
    4. Arthur M. Geoffrion & Richard F. Powers, 1995. "Twenty Years of Strategic Distribution System Design: An Evolutionary Perspective," Interfaces, INFORMS, vol. 25(5), pages 105-127, October.
    5. van den Heuvel, W.J. & Wagelmans, A.P.M., 2003. "A geometric algorithm to solve the NI/G/NI/ND capacitated lot-sizing problem in O(T2) time," Econometric Institute Research Papers EI 2003-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Kenneth R. Baker & Paul Dixon & Michael J. Magazine & Edward A. Silver, 1978. "An Algorithm for the Dynamic Lot-Size Problem with Time-Varying Production Capacity Constraints," Management Science, INFORMS, vol. 24(16), pages 1710-1720, December.
    7. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    8. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    9. Chandra, Pankaj & Fisher, Marshall L., 1994. "Coordination of production and distribution planning," European Journal of Operational Research, Elsevier, vol. 72(3), pages 503-517, February.
    10. Willard I. Zangwill, 1969. "A Backlogging Model and a Multi-Echelon Model of a Dynamic Economic Lot Size Production System--A Network Approach," Management Science, INFORMS, vol. 15(9), pages 506-527, May.
    11. Thomas, Douglas J. & Griffin, Paul M., 1996. "Coordinated supply chain management," European Journal of Operational Research, Elsevier, vol. 94(1), pages 1-15, October.
    12. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    13. Alok Aggarwal & James K. Park, 1993. "Improved Algorithms for Economic Lot Size Problems," Operations Research, INFORMS, vol. 41(3), pages 549-571, June.
    14. Chung-Yee Lee & Sila Çetinkaya & Wikrom Jaruphongsa, 2003. "A Dynamic Model for Inventory Lot Sizing and Outbound Shipment Scheduling at a Third-Party Warehouse," Operations Research, INFORMS, vol. 51(5), pages 735-747, October.
    15. Bruce C. Arntzen & Gerald G. Brown & Terry P. Harrison & Linda L. Trafton, 1995. "Global Supply Chain Management at Digital Equipment Corporation," Interfaces, INFORMS, vol. 25(1), pages 69-93, February.
    16. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Hoesel, C.P.M. & Romeijn, H.E. & Romero Morales, M.D. & Wagelmans, A., 2002. "Polynomial time algorithms for some multi-level lot-sizing problems with production capacities," Research Memorandum 018, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    2. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P.M. Wagelmans, 2002. "Polynomial Time Algorithms for Some Multi-Level Lot-Sizing Problems with Production Capacities," Tinbergen Institute Discussion Papers 02-066/4, Tinbergen Institute.
    3. van Hoesel, S. & Romeijn, H.E. & Romero Morales, D. & Wagelmans, A.P.M., 2002. "Polynomial Time Algorithms For Some Multi-Level Lot-Sizing Problems With Production Capacities," ERIM Report Series Research in Management ERS-2002-59-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Ming Zhao & Minjiao Zhang, 2020. "Multiechelon Lot Sizing: New Complexities and Inequalities," Operations Research, INFORMS, vol. 68(2), pages 534-551, March.
    5. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    6. Hwang, Hark-Chin & Kang, Jangha, 2020. "The two-level lot-sizing problem with outbound shipment," Omega, Elsevier, vol. 90(C).
    7. Goisque, Guillaume & Rapine, Christophe, 2017. "An efficient algorithm for the 2-level capacitated lot-sizing problem with identical capacities at both levels," European Journal of Operational Research, Elsevier, vol. 261(3), pages 918-928.
    8. Alper Atamtürk & Dorit S. Hochbaum, 2001. "Capacity Acquisition, Subcontracting, and Lot Sizing," Management Science, INFORMS, vol. 47(8), pages 1081-1100, August.
    9. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    10. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    11. Vernon Ning Hsu, 2000. "Dynamic Economic Lot Size Model with Perishable Inventory," Management Science, INFORMS, vol. 46(8), pages 1159-1169, August.
    12. Hark-Chin Hwang, 2010. "Economic Lot-Sizing for Integrated Production and Transportation," Operations Research, INFORMS, vol. 58(2), pages 428-444, April.
    13. Hark-Chin Hwang & Hyun-Soo Ahn & Philip Kaminsky, 2013. "Basis Paths and a Polynomial Algorithm for the Multistage Production-Capacitated Lot-Sizing Problem," Operations Research, INFORMS, vol. 61(2), pages 469-482, April.
    14. Hark-Chin Hwang, 2009. "Inventory Replenishment and Inbound Shipment Scheduling Under a Minimum Replenishment Policy," Transportation Science, INFORMS, vol. 43(2), pages 244-264, May.
    15. Laurence A. Wolsey, 2002. "Solving Multi-Item Lot-Sizing Problems with an MIP Solver Using Classification and Reformulation," Management Science, INFORMS, vol. 48(12), pages 1587-1602, December.
    16. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    17. van den Heuvel, W.J. & Wagelmans, A.P.M., 2003. "A geometric algorithm to solve the NI/G/NI/ND capacitated lot-sizing problem in O(T2) time," Econometric Institute Research Papers EI 2003-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Hwang, Hark-Chin & Jaruphongsa, Wikrom, 2008. "Dynamic lot-sizing model for major and minor demands," European Journal of Operational Research, Elsevier, vol. 184(2), pages 711-724, January.
    19. Jian Yang & Boaz Golany & Gang Yu, 2005. "A concave‐cost production planning problem with remanufacturing options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 443-458, August.
    20. Eksioglu, Sandra Duni, 2009. "A primal-dual algorithm for the economic lot-sizing problem with multi-mode replenishment," European Journal of Operational Research, Elsevier, vol. 197(1), pages 93-101, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:51:y:2005:i:11:p:1706-1719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.