IDEAS home Printed from https://ideas.repec.org/p/ekd/009007/9375.html
   My bibliography  Save this paper

Static and dynamic portfolio allocation with nonstandard utility functions

Author

Listed:
  • Antonio Santos

Abstract

This article builds on the mean-variance criterion and the links with the expected utility maximization to define the optimal allocation of portfolios, and extends the results in two ways, first considers tailored made utility functions, which can be non continuous and able to capture possible preferences associated with some portfolio managers. Second, it presents results that relate to static (myopic) portfolio allocation decisions connected to dynamic settings where multi-period allocations are considered and conditions are defined to rebalance the portfolio as new information arrive. The conditions are established for the compatibility of static and dynamic decisions associated with different utility functions. We model agents’ decisions associated with portfolio allocation within the expected utility maximization framework. We expect to link the common paradigm of the mean-variance criterion associated with myopic portfolio allocation problems with a more practical implementation of such decision problems, where non continuous utility functions and multi-period type of decisions can play an important role.

Suggested Citation

  • Antonio Santos, 2016. "Static and dynamic portfolio allocation with nonstandard utility functions," EcoMod2016 9375, EcoMod.
  • Handle: RePEc:ekd:009007:9375
    as

    Download full text from publisher

    File URL: http://ecomod.net/system/files/ecomoddynamicportaasantos_0.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    2. Yu, Mei & Takahashi, Satoru & Inoue, Hiroshi & Wang, Shouyang, 2010. "Dynamic portfolio optimization with risk control for absolute deviation model," European Journal of Operational Research, Elsevier, vol. 201(2), pages 349-364, March.
    3. Bae, Geum Il & Kim, Woo Chang & Mulvey, John M., 2014. "Dynamic asset allocation for varied financial markets under regime switching framework," European Journal of Operational Research, Elsevier, vol. 234(2), pages 450-458.
    4. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    5. Kai Ye & Panos Parpas & Berç Rustem, 2012. "Robust portfolio optimization: a conic programming approach," Computational Optimization and Applications, Springer, vol. 52(2), pages 463-481, June.
    6. Reid, Donald W & Tew, Bernard V, 1986. "Mean-Variance versus Direct Utility Maximization: A Comment," Journal of Finance, American Finance Association, vol. 41(5), pages 1177-1179, December.
    7. Katrin Schöttle & Ralf Werner & Rudi Zagst, 2010. "Comparison and robustification of Bayes and Black-Litterman models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 453-475, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chou-Wen & Liu, Kai & Li, Bin & Tan, Ken Seng, 2022. "Portfolio optimization under multivariate affine generalized hyperbolic distributions," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 49-66.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    2. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    3. Manfred M. Fischer & Florian Huber & Michael Pfarrhofer, 2018. "The transmission of uncertainty shocks on income inequality: State-level evidence from the United States," Papers 1806.08278, arXiv.org.
    4. Vilkkumaa, Eeva & Liesiö, Juuso & Salo, Ahti, 2014. "Optimal strategies for selecting project portfolios using uncertain value estimates," European Journal of Operational Research, Elsevier, vol. 233(3), pages 772-783.
    5. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    6. Cardoso de Mendonça, Mário Jorge & Moreira Pessanha, José Francisco & Andrade de Almeida, Victor & Toscano Medrano, Luiz Alberto & Hunt, Julian David & Pereira Junior, Amaro Olímpio & Nogueira, Erika , 2024. "Synthetic wind speed time series generation by dynamic factor model," Renewable Energy, Elsevier, vol. 228(C).
    7. Baker, Erin & Bosetti, Valentina & Salo, Ahti, 2016. "Finding Common Ground when Experts Disagree: Belief Dominance over Portfolios of Alternatives," MITP: Mitigation, Innovation and Transformation Pathways 243147, Fondazione Eni Enrico Mattei (FEEM).
    8. Yizhan Shu & Chenyu Yu & John M. Mulvey, 2024. "Downside risk reduction using regime-switching signals: a statistical jump model approach," Journal of Asset Management, Palgrave Macmillan, vol. 25(5), pages 493-507, September.
    9. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    10. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    11. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Dealing with Drift Uncertainty: A Bayesian Learning Approach," Risks, MDPI, vol. 7(1), pages 1-18, January.
    12. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    13. Xiaoyue Li & A. Sinem Uysal & John M. Mulvey, 2021. "Multi-Period Portfolio Optimization using Model Predictive Control with Mean-Variance and Risk Parity Frameworks," Papers 2103.10813, arXiv.org.
    14. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    15. Katalin Varga & Tibor Szendrei, 2024. "Non-stationary Financial Risk Factors and Macroeconomic Vulnerability for the UK," Papers 2404.01451, arXiv.org.
    16. Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
    17. Peng W. He & Andrew Grant & Joel Fabre, 2013. "Economic value of analyst recommendations in Australia: an application of the Black–Litterman asset allocation model," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(2), pages 441-470, June.
    18. David Quintana & Roman Denysiuk & Sandra García-Rodríguez & Antonio Gaspar-Cunha, 2017. "Portfolio implementation risk management using evolutionary multiobjective optimization," Post-Print hal-01881379, HAL.
    19. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    20. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.

    More about this item

    Keywords

    Portugal; Agent-based modeling; Optimization models;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ekd:009007:9375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theresa Leary (email available below). General contact details of provider: https://edirc.repec.org/data/ecomoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.