IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v25y2023icp125-133.html
   My bibliography  Save this article

A Markov decision process for response adaptive designs

Author

Listed:
  • Yi, Yanqing
  • Wang, Xikui

Abstract

The randomized treatment allocation process in a response adaptive clinical trial is formulated as a stochastic sequential decision problem and an algorithm is proposed to approximate the optimal value under the average reward criterion. When the information of previous treatment allocations and associated responses are summarized with sufficient statistics for unknown parameters, the decision process becomes a Markov process, on which a span-contractor operator is defined. It is proven that the average reward under the policy identified from the span-contractor operator converges almost surely to the optimal value. Numerical results reveal that the sequential procedure based on the controlled Markov process shows superior ethical advantage and at the same time produces good statistical power for large sample sizes such as 200 or larger.

Suggested Citation

  • Yi, Yanqing & Wang, Xikui, 2023. "A Markov decision process for response adaptive designs," Econometrics and Statistics, Elsevier, vol. 25(C), pages 125-133.
  • Handle: RePEc:eee:ecosta:v:25:y:2023:i:c:p:125-133
    DOI: 10.1016/j.ecosta.2021.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306221001301
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2021.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Feifang & Rosenberger, William F., 2003. "Optimality, Variability, Power: Evaluating Response-Adaptive Randomization Procedures for Treatment Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 671-678, January.
    2. Tymofyeyev, Yevgen & Rosenberger, William F. & Hu, Feifang, 2007. "Implementing Optimal Allocation in Sequential Binary Response Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 224-234, March.
    3. Yi Cheng & Donald A. Berry, 2007. "Optimal adaptive randomized designs for clinical trials," Biometrika, Biometrika Trust, vol. 94(3), pages 673-689.
    4. Alessandro Baldi Antognini & Alessandra Giovagnoli, 2010. "Compound optimal allocation for individual and collective ethics in binary clinical trials," Biometrika, Biometrika Trust, vol. 97(4), pages 935-946.
    5. Yi, Yanqing, 2013. "Exact statistical power for response adaptive designs," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 201-209.
    6. Yi, Yanqing & Wang, Xikui, 2007. "Goodness-of-fit test for response adaptive clinical trials," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1014-1020, June.
    7. Michael A. Proschan & Martha Nason, 2009. "Conditioning in 2 × 2 Tables," Biometrics, The International Biometric Society, vol. 65(1), pages 316-322, March.
    8. Jianhua Hu & Hongjian Zhu & Feifang Hu, 2015. "A Unified Family of Covariate-Adjusted Response-Adaptive Designs Based on Efficiency and Ethics," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 357-367, March.
    9. William F. Rosenberger & Nigel Stallard & Anastasia Ivanova & Cherice N. Harper & Michelle L. Ricks, 2001. "Optimal Adaptive Designs for Binary Response Trials," Biometrics, The International Biometric Society, vol. 57(3), pages 909-913, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanqing Yi & Yuan Yuan, 2013. "An optimal allocation for response-adaptive designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1996-2008, September.
    2. Yi, Yanqing, 2013. "Exact statistical power for response adaptive designs," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 201-209.
    3. Alessandro Baldi Antognini & Marco Novelli & Maroussa Zagoraiou, 2022. "A simple solution to the inadequacy of asymptotic likelihood-based inference for response-adaptive clinical trials," Statistical Papers, Springer, vol. 63(1), pages 157-180, February.
    4. Chambaz Antoine & van der Laan Mark J., 2011. "Targeting the Optimal Design in Randomized Clinical Trials with Binary Outcomes and No Covariate: Theoretical Study," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-32, January.
    5. Jianhua Hu & Hongjian Zhu & Feifang Hu, 2015. "A Unified Family of Covariate-Adjusted Response-Adaptive Designs Based on Efficiency and Ethics," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 357-367, March.
    6. Xu, Wenfu & Gao, Jingya & Hu, Feifang & Cheung, Siu Hung, 2018. "Response-adaptive treatment allocation for non-inferiority trials with heterogeneous variances," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 168-179.
    7. Hengtao Zhang & Guosheng Yin, 2021. "Response‐adaptive rerandomization," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1281-1298, November.
    8. Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," LSE Research Online Documents on Economics 66761, London School of Economics and Political Science, LSE Library.
    9. Jennifer Proper & Thomas A. Murray, 2023. "An alternative metric for evaluating the potential patient benefit of response‐adaptive randomization procedures," Biometrics, The International Biometric Society, vol. 79(2), pages 1433-1445, June.
    10. Li-Xin, Zhang, 2006. "Asymptotic results on a class of adaptive multi-treatment designs," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 586-605, March.
    11. Tolusso, David & Wang, Xikui, 2011. "Interval estimation for response adaptive clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 725-730, January.
    12. Lanju Zhang & William F. Rosenberger, 2006. "Response-Adaptive Randomization for Clinical Trials with Continuous Outcomes," Biometrics, The International Biometric Society, vol. 62(2), pages 562-569, June.
    13. Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 297-310.
    14. Sofía S. Villar & William F. Rosenberger, 2018. "Covariate†adjusted response†adaptive randomization for multi†arm clinical trials using a modified forward looking Gittins index rule," Biometrics, The International Biometric Society, vol. 74(1), pages 49-57, March.
    15. Belmiro P. M. Duarte & Anthony C. Atkinson & David Pedrosa & Marlena van Munster, 2024. "Compound Optimum Designs for Clinical Trials in Personalized Medicine," Mathematics, MDPI, vol. 12(19), pages 1-20, September.
    16. Uttam Bandyopadhyay & Rahul Bhattacharya, 2009. "Response adaptive procedures with dual optimality," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 353-367, August.
    17. Uttam Bandyopadhyay & Atanu Biswas & Rahul Bhattacharya, 2009. "Drop-the-loser design in the presence of covariates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 69(1), pages 1-15, January.
    18. Alessandro Baldi Antognini & Marco Novelli & Maroussa Zagoraiou, 2022. "A new inferential approach for response-adaptive clinical trials: the variance-stabilized bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 235-254, March.
    19. Uttam Bandyopadhyay & Atanu Biswas & Shirsendu Mukherjee, 2009. "Adaptive two-treatment two-period crossover design for binary treatment responses incorporating carry-over effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 13-33, March.
    20. Yusuke Narita, 2018. "Experiment-as-Market: Incorporating Welfare into Randomized Controlled Trials," Cowles Foundation Discussion Papers 2127r, Cowles Foundation for Research in Economics, Yale University, revised May 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:25:y:2023:i:c:p:125-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.