IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/63362.html
   My bibliography  Save this paper

Duality theory for portfolio optimisation under transaction costs

Author

Listed:
  • Czichowsky, Christoph
  • Schachermayer, Walter

Abstract

We consider the problem of portfolio optimisation with general càdlàg price processes in the presence of proportional transaction costs. In this context, we develop a general duality theory. In particular, we prove the existence of a dual optimiser as well as a shadow price process in an appropriate generalised sense. This shadow price is defined by means of a "sandwiched" process consisting of a predictable and an optional strong supermartingale, and pertains to all strategies that remain solvent under transaction costs. We provide examples showing that, in the general setting we study, the shadow price processes have to be of such a generalised form.

Suggested Citation

  • Czichowsky, Christoph & Schachermayer, Walter, 2016. "Duality theory for portfolio optimisation under transaction costs," LSE Research Online Documents on Economics 63362, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:63362
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/63362/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jouini Elyes & Kallal Hedi, 1995. "Martingales and Arbitrage in Securities Markets with Transaction Costs," Journal of Economic Theory, Elsevier, vol. 66(1), pages 178-197, June.
    2. Cvitanic, Jaksa & Wang, Hui, 2001. "On optimal terminal wealth under transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 223-231, April.
    3. Luciano Campi & Walter Schachermayer, 2006. "A super-replication theorem in Kabanov’s model of transaction costs," Finance and Stochastics, Springer, vol. 10(4), pages 579-596, December.
    4. Griselda Deelstra & Huyên Pham & Nizar Touzi, 2001. "Dual formulation of the utility maximisation problem under transaction costs," ULB Institutional Repository 2013/7596, ULB -- Universite Libre de Bruxelles.
    5. repec:dau:papers:123456789/5455 is not listed on IDEAS
    6. He, Hua & Pearson, Neil D., 1991. "Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case," Journal of Economic Theory, Elsevier, vol. 54(2), pages 259-304, August.
    7. repec:dau:papers:123456789/5630 is not listed on IDEAS
    8. J. Kallsen & J. Muhle-Karbe, 2010. "On using shadow prices in portfolio optimization with transaction costs," Papers 1010.4989, arXiv.org.
    9. Jan Kallsen & Johannes Muhle-Karbe, 2011. "Existence of shadow prices in finite probability spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 251-262, April.
    10. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case1," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10, July.
    11. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    12. Constantinos Kardaras, 2012. "Market viability via absence of arbitrage of the first kind," Finance and Stochastics, Springer, vol. 16(4), pages 651-667, October.
    13. Loewenstein, Mark, 2000. "On optimal portfolio trading strategies for an investor facing transactions costs in a continuous trading market," Journal of Mathematical Economics, Elsevier, vol. 33(2), pages 209-228, March.
    14. Walter Schachermayer, 2013. "Admissible Trading Strategies under Transaction Costs," Papers 1308.1492, arXiv.org, revised May 2014.
    15. Luciano Campi & Mark Owen, 2011. "Multivariate utility maximization with proportional transaction costs," Finance and Stochastics, Springer, vol. 15(3), pages 461-499, September.
    16. Walter Schachermayer, 2014. "The super-replication theorem under proportional transaction costs revisited," Papers 1405.1266, arXiv.org.
    17. Jakša Cvitanić & Ioannis Karatzas, 1996. "Hedging And Portfolio Optimization Under Transaction Costs: A Martingale Approach12," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165, April.
    18. repec:dau:papers:123456789/7701 is not listed on IDEAS
    19. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    20. Giuseppe Benedetti & Luciano Campi & Jan Kallsen & Johannes Muhle-Karbe, 2011. "On the existence of shadow prices," Working Papers hal-00645980, HAL.
    21. Giuseppe Benedetti & Luciano Campi & Jan Kallsen & Johannes Muhle-Karbe, 2011. "On the Existence of Shadow Prices," Papers 1111.6633, arXiv.org, revised Jan 2013.
    22. Erhan Bayraktar & Xiang Yu, 2018. "On the market viability under proportional transaction costs," Mathematical Finance, Wiley Blackwell, vol. 28(3), pages 800-838, July.
    23. Giuseppe Benedetti & Luciano Campi & Jan Kallsen & Johannes Muhle-Karbe, 2013. "On the existence of shadow prices," Finance and Stochastics, Springer, vol. 17(4), pages 801-818, October.
    24. Giuseppe Benedetti & Luciano Campi, 2011. "Multivariate utility maximization with proportional transaction costs and random endowment," Working Papers hal-00586377, HAL.
    25. repec:dau:papers:123456789/2318 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Czichowsky & Rémi Peyre & Walter Schachermayer & Junjian Yang, 2018. "Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs," Post-Print hal-02373296, HAL.
    2. Christoph Kuhn, 2023. "The fundamental theorem of asset pricing with and without transaction costs," Papers 2307.00571, arXiv.org, revised Aug 2024.
    3. Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2020. "Extended weak convergence and utility maximisation with proportional transaction costs," Finance and Stochastics, Springer, vol. 24(4), pages 1013-1034, October.
    4. Christoph Czichowsky & Raphael Huwyler, 2022. "Robust utility maximisation under proportional transaction costs for c\`adl\`ag price processes," Papers 2211.00532, arXiv.org, revised Aug 2024.
    5. Peter Bank & David Besslich, 2018. "Modelling information flows by Meyer-$\sigma$-fields in the singular stochastic control problem of irreversible investment," Papers 1810.08495, arXiv.org, revised Mar 2020.
    6. Kim Weston, 2017. "Existence of a Radner equilibrium in a model with transaction costs," Papers 1702.01706, arXiv.org, revised Feb 2018.
    7. Albert Altarovici & Max Reppen & H. Mete Soner, 2016. "Optimal Consumption and Investment with Fixed and Proportional Transaction Costs," Papers 1610.03958, arXiv.org.
    8. Christoph Czichowsky & R'emi Peyre & Walter Schachermayer & Junjian Yang, 2016. "Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs," Papers 1608.01415, arXiv.org.
    9. Eberhard Mayerhofer, 2024. "Almost Perfect Shadow Prices," JRFM, MDPI, vol. 17(2), pages 1-18, February.
    10. Tae Ung Gang & Jin Hyuk Choi, 2024. "Unified Asymptotics For Investment Under Illiquidity: Transaction Costs And Search Frictions," Papers 2407.13547, arXiv.org.
    11. Miklos Rasonyi, 2017. "On utility maximization without passing by the dual problem," Papers 1702.00982, arXiv.org, revised Mar 2018.
    12. Palma, Nuno, 2018. "Money and modernization in early modern England," Financial History Review, Cambridge University Press, vol. 25(3), pages 231-261, December.
    13. Lingqi Gu & Yiqing Lin & Junjian Yang, 2017. "Utility maximization problem under transaction costs: optimal dual processes and stability," Papers 1710.04363, arXiv.org.
    14. E. Babaei & I.V. Evstigneev & K.R. Schenk-Hoppé, 2019. "Log-Optimal and Rapid Paths in von Neumann-Gale Dynamical Systems," Economics Discussion Paper Series 1902, Economics, The University of Manchester.
    15. Erhan Bayraktar & Christoph Czichowsky & Leonid Dolinskyi & Yan Dolinsky, 2021. "A Note on Utility Maximization with Proportional Transaction Costs and Stability of Optimal Portfolios," Papers 2107.01568, arXiv.org, revised Sep 2021.
    16. Yiqing Lin & Junjian Yang, 2016. "Utility maximization problem with random endowment and transaction costs: when wealth may become negative," Papers 1604.08224, arXiv.org, revised Sep 2016.
    17. Jin Hyuk Choi & Tae Ung Gang, 2021. "Optimal investment in illiquid market with search frictions and transaction costs," Papers 2101.09936, arXiv.org, revised Aug 2021.
    18. Christoph Belak & Jörn Sass, 2019. "Finite-horizon optimal investment with transaction costs: construction of the optimal strategies," Finance and Stochastics, Springer, vol. 23(4), pages 861-888, October.
    19. Christoph Czichowsky & Rémi Peyre & Walter Schachermayer & Junjian Yang, 2018. "Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs," Finance and Stochastics, Springer, vol. 22(1), pages 161-180, January.
    20. Christoph Kühn & Alexander Molitor, 2022. "Semimartingale price systems in models with transaction costs beyond efficient friction," Finance and Stochastics, Springer, vol. 26(4), pages 927-982, October.
    21. Jan Obloj & Johannes Wiesel, 2021. "Distributionally robust portfolio maximisation and marginal utility pricing in one period financial markets," Papers 2105.00935, arXiv.org, revised Nov 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Czichowsky & Walter Schachermayer, 2014. "Duality Theory for Portfolio Optimisation under Transaction Costs," Papers 1408.5989, arXiv.org.
    2. Yiqing Lin & Junjian Yang, 2016. "Utility maximization problem with random endowment and transaction costs: when wealth may become negative," Papers 1604.08224, arXiv.org, revised Sep 2016.
    3. Czichowsky, Christoph & Schachermayer, Walter, 2017. "Portfolio optimisation beyond semimartingales: shadowprices and fractional Brownian motion," LSE Research Online Documents on Economics 67689, London School of Economics and Political Science, LSE Library.
    4. Czichowsky, Christoph & Schachermayer, Walter & Yang, Junjian, 2017. "Shadow prices for continuous processes," LSE Research Online Documents on Economics 63370, London School of Economics and Political Science, LSE Library.
    5. Christoph Czichowsky & Walter Schachermayer & Junjian Yang, 2014. "Shadow prices for continuous processes," Papers 1408.6065, arXiv.org, revised May 2015.
    6. Christoph Czichowsky & Walter Schachermayer, 2015. "Portfolio optimisation beyond semimartingales: shadow prices and fractional Brownian motion," Papers 1505.02416, arXiv.org, revised Aug 2016.
    7. Christoph Czichowsky & R'emi Peyre & Walter Schachermayer & Junjian Yang, 2016. "Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs," Papers 1608.01415, arXiv.org.
    8. Lingqi Gu & Yiqing Lin & Junjian Yang, 2017. "Utility maximization problem under transaction costs: optimal dual processes and stability," Papers 1710.04363, arXiv.org.
    9. Christoph Czichowsky & Rémi Peyre & Walter Schachermayer & Junjian Yang, 2018. "Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs," Post-Print hal-02373296, HAL.
    10. Czichowsky, Christoph Johannes & Peyre, Rémi & Schachermayer, Walter & Yang, Junjian, 2018. "Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs," LSE Research Online Documents on Economics 85230, London School of Economics and Political Science, LSE Library.
    11. Giuseppe Benedetti & Luciano Campi & Jan Kallsen & Johannes Muhle-Karbe, 2013. "On the existence of shadow prices," Finance and Stochastics, Springer, vol. 17(4), pages 801-818, October.
    12. Christoph Czichowsky & Rémi Peyre & Walter Schachermayer & Junjian Yang, 2018. "Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs," Finance and Stochastics, Springer, vol. 22(1), pages 161-180, January.
    13. Lingqi Gu & Yiqing Lin & Junjian Yang, 2016. "On the existence of shadow prices for optimal investment with random endowment," Papers 1602.01109, arXiv.org, revised Feb 2017.
    14. Christoph Czichowsky & Johannes Muhle-Karbe & Walter Schachermayer, 2012. "Transaction Costs, Shadow Prices, and Duality in Discrete Time," Papers 1205.4643, arXiv.org, revised Jan 2014.
    15. Giuseppe Benedetti & Luciano Campi & Jan Kallsen & Johannes Muhle-Karbe, 2011. "On the Existence of Shadow Prices," Papers 1111.6633, arXiv.org, revised Jan 2013.
    16. Lingqi Gu & Yiqing Lin & Junjian Yang, 2016. "A note on utility maximization with transaction costs and random endoment: num\'eraire-based model and convex duality," Papers 1602.01070, arXiv.org, revised Feb 2016.
    17. Giuseppe Benedetti & Luciano Campi & Jan Kallsen & Johannes Muhle-Karbe, 2011. "On the existence of shadow prices," Working Papers hal-00645980, HAL.
    18. Dmitry Rokhlin, 2013. "On the game interpretation of a shadow price process in utility maximization problems under transaction costs," Finance and Stochastics, Springer, vol. 17(4), pages 819-838, October.
    19. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    20. Jörn Sass & Manfred Schäl, 2014. "Numeraire portfolios and utility-based price systems under proportional transaction costs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 195-234, October.

    More about this item

    Keywords

    utility maximisation; proportional transaction costs; convex duality; shadow prices; supermartingale deflators; optional strong supermartingales; predictable strong supermartingales; logarithmic utility;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:63362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.