IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v23y2019i4d10.1007_s00780-019-00404-4.html
   My bibliography  Save this article

Finite-horizon optimal investment with transaction costs: construction of the optimal strategies

Author

Listed:
  • Christoph Belak

    (Technische Universität Berlin)

  • Jörn Sass

    (University of Kaiserslautern)

Abstract

We revisit the problem of maximising expected utility of terminal wealth in a Black–Scholes market with proportional transaction costs. While it is known that the value function of this problem is the unique viscosity solution of the HJB equation and that the HJB equation admits a classical solution on a reduced state space, it has been an open problem to verify that these two coincide. We establish this result by devising a verification procedure based on superharmonic functions. In the process, we construct optimal strategies and provide a detailed analysis of the regularity of the value function.

Suggested Citation

  • Christoph Belak & Jörn Sass, 2019. "Finite-horizon optimal investment with transaction costs: construction of the optimal strategies," Finance and Stochastics, Springer, vol. 23(4), pages 861-888, October.
  • Handle: RePEc:spr:finsto:v:23:y:2019:i:4:d:10.1007_s00780-019-00404-4
    DOI: 10.1007/s00780-019-00404-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-019-00404-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-019-00404-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoph Czichowsky & Walter Schachermayer & Junjian Yang, 2017. "Shadow Prices For Continuous Processes," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 623-658, July.
    2. Marianne Akian & Agnès Sulem & Michael I. Taksar, 2001. "Dynamic Optimization of Long‐Term Growth Rate for a Portfolio with Transaction Costs and Logarithmic Utility," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 153-188, April.
    3. Czichowsky, Christoph & Schachermayer, Walter, 2017. "Portfolio optimisation beyond semimartingales: shadowprices and fractional Brownian motion," LSE Research Online Documents on Economics 67689, London School of Economics and Political Science, LSE Library.
    4. Roland Herzog & Karl Kunisch & Jörn Sass, 2013. "Primal-dual methods for the computation of trading regions under proportional transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 101-130, February.
    5. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    6. Jan Kallsen & Johannes Muhle-Karbe, 2017. "The General Structure Of Optimal Investment And Consumption With Small Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 659-703, July.
    7. S. Gerhold & J. Muhle-Karbe & W. Schachermayer, 2013. "The dual optimizer for the growth-optimal portfolio under transaction costs," Finance and Stochastics, Springer, vol. 17(2), pages 325-354, April.
    8. Jan Kallsen & Shen Li, 2013. "Portfolio Optimization under Small Transaction Costs: a Convex Duality Approach," Papers 1309.3479, arXiv.org.
    9. Li, Geng, 2009. "Transaction costs and consumption," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1263-1277, June.
    10. Christensen, Sören, 2014. "On the solution of general impulse control problems using superharmonic functions," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 709-729.
    11. Czichowsky, Christoph & Schachermayer, Walter, 2016. "Duality theory for portfolio optimisation under transaction costs," LSE Research Online Documents on Economics 63362, London School of Economics and Political Science, LSE Library.
    12. J. Kallsen & J. Muhle-Karbe, 2010. "On using shadow prices in portfolio optimization with transaction costs," Papers 1010.4989, arXiv.org.
    13. Yuri Kabanov & Claudia Klüppelberg, 2004. "A geometric approach to portfolio optimization in models with transaction costs," Finance and Stochastics, Springer, vol. 8(2), pages 207-227, May.
    14. Karl Kunisch & Jörn Sass, 2007. "Trading Regions Under Proportional Transaction Costs," Operations Research Proceedings, in: Karl-Heinz Waldmann & Ulrike M. Stocker (ed.), Operations Research Proceedings 2006, pages 563-568, Springer.
    15. Karel Janeček & Steven Shreve, 2004. "Asymptotic analysis for optimal investment and consumption with transaction costs," Finance and Stochastics, Springer, vol. 8(2), pages 181-206, May.
    16. Stefan Gerhold & Paolo Guasoni & Johannes Muhle-Karbe & Walter Schachermayer, 2014. "Transaction costs, trading volume, and the liquidity premium," Finance and Stochastics, Springer, vol. 18(1), pages 1-37, January.
    17. Czichowsky, Christoph & Schachermayer, Walter & Yang, Junjian, 2017. "Shadow prices for continuous processes," LSE Research Online Documents on Economics 63370, London School of Economics and Political Science, LSE Library.
    18. Attila Herczegh & Vilmos Prokaj, 2011. "Shadow price in the power utility case," Papers 1112.4385, arXiv.org, revised Sep 2015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Falkowski, Adrian & Słomiński, Leszek, 2022. "SDEs with two reflecting barriers driven by semimartingales and processes with bounded p-variation," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 164-186.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Herdegen & Johannes Muhle-Karbe, 2018. "Stability of Radner equilibria with respect to small frictions," Finance and Stochastics, Springer, vol. 22(2), pages 443-502, April.
    2. Xinfu Chen & Min Dai & Wei Jiang & Cong Qin, 2022. "Asymptotic analysis of long‐term investment with two illiquid and correlated assets," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1133-1169, October.
    3. Bruno Bouchard & Johannes Muhle-Karbe, 2018. "Simple Bounds for Transaction Costs," Working Papers hal-01711371, HAL.
    4. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    5. Yaroslav Melnyk & Frank Thomas Seifried, 2018. "Small†cost asymptotics for long†term growth rates in incomplete markets," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 668-711, April.
    6. Stefan Gerhold & Paolo Guasoni & Johannes Muhle-Karbe & Walter Schachermayer, 2014. "Transaction costs, trading volume, and the liquidity premium," Finance and Stochastics, Springer, vol. 18(1), pages 1-37, January.
    7. Bruno Bouchard & Johannes Muhle-Karbe, 2022. "Simple Bounds for Transaction Costs," Post-Print hal-01711371, HAL.
    8. Jin Hyuk Choi, 2016. "Optimal consumption and investment with liquid and illiquid assets," Papers 1602.06998, arXiv.org, revised Jan 2019.
    9. Bruno Bouchard & Johannes Muhle-Karbe, 2018. "Simple Bounds for Utility Maximization with Small Transaction Costs," Papers 1802.06120, arXiv.org, revised Mar 2021.
    10. Christoph Kühn & Alexander Molitor, 2022. "Semimartingale price systems in models with transaction costs beyond efficient friction," Finance and Stochastics, Springer, vol. 26(4), pages 927-982, October.
    11. Yiqing Lin & Junjian Yang, 2016. "Utility maximization problem with random endowment and transaction costs: when wealth may become negative," Papers 1604.08224, arXiv.org, revised Sep 2016.
    12. Bouchard, Bruno & Muhle-Karbe, Johannes, 2022. "Simple bounds for utility maximization with small transaction costs," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 98-113.
    13. Christoph Belak & Lukas Mich & Frank T. Seifried, 2019. "Optimal Investment for Retail Investors with Flooredand Capped Costs," Working Paper Series 2019-06, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    14. Dai, Min & Wang, Hefei & Yang, Zhou, 2012. "Leverage management in a bull–bear switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1585-1599.
    15. Soren Christensen & Marc Wittlinger, 2012. "Optimal relaxed portfolio strategies for growth rate maximization problems with transaction costs," Papers 1209.0305, arXiv.org, revised Jun 2013.
    16. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    17. Albert Altarovici & Max Reppen & H. Mete Soner, 2016. "Optimal Consumption and Investment with Fixed and Proportional Transaction Costs," Papers 1610.03958, arXiv.org.
    18. Ren Liu & Johannes Muhle-Karbe & Marko H. Weber, 2014. "Rebalancing with Linear and Quadratic Costs," Papers 1402.5306, arXiv.org, revised Sep 2017.
    19. Johannes Muhle-Karbe & Ren Liu, 2012. "Portfolio Selection with Small Transaction Costs and Binding Portfolio Constraints," Papers 1205.4588, arXiv.org, revised Jan 2013.
    20. Kim Weston, 2017. "Existence of a Radner equilibrium in a model with transaction costs," Papers 1702.01706, arXiv.org, revised Feb 2018.

    More about this item

    Keywords

    Utility maximisation; Transaction costs; Reflected diffusions; Superharmonic functions;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:23:y:2019:i:4:d:10.1007_s00780-019-00404-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.