IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/32210.html
   My bibliography  Save this paper

Patrolling games

Author

Listed:
  • Alpern, Steven
  • Morton, Alec
  • Papadaki, Katerina

Abstract

A key operational problem for those charged with the security of vulnerable facilities (such as airports or art galleries) is the scheduling and deployment of patrols. Motivated by the problem of optimizing randomized, and thus unpredictable, patrols, we present a class of patrolling games. The facility to be patrolled can be thought of as a network or graph Q of interconnected nodes (e.g., rooms, terminals), and the Attacker can choose to attack any node of Q within a given time T . He requires m consecutive periods there, uninterrupted by the Patroller, to commit his nefarious act (and win). The Patroller can follow any path on the graph. Thus, the patrolling game is a win-lose game, where the Value is the probability that the Patroller successfully intercepts an attack, given best play on both sides. We determine analytically either the Value of the game, or bounds on the Value, for various classes of graphs, and we discuss possible extensions and generalizations. Subject classifications: games; noncooperative; military, search/surveillance; decision analysis; risk; networks/graphs. Area of review: Military and Homeland Security. History: Received November 2009; revisions received March 2010, September 2010; accepted November 2010

Suggested Citation

  • Alpern, Steven & Morton, Alec & Papadaki, Katerina, 2011. "Patrolling games," LSE Research Online Documents on Economics 32210, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:32210
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/32210/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    2. Avenhaus, Rudolf & Von Stengel, Bernhard & Zamir, Shmuel, 2002. "Inspection games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 51, pages 1947-1987, Elsevier.
    3. Craig R. Fox & David Bardolet & Daniel Lieb, 2005. "Partition Dependence in Decision Analysis, Resource Allocation, and Consumer Choice," Springer Books, in: Rami Zwick & Amnon Rapoport (ed.), Experimental Business Research, chapter 0, pages 229-251, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baykal-Gürsoy, Melike & Duan, Zhe & Poor, H. Vincent & Garnaev, Andrey, 2014. "Infrastructure security games," European Journal of Operational Research, Elsevier, vol. 239(2), pages 469-478.
    2. Laan, Corine M. & van der Mijden, Tom & Barros, Ana Isabel & Boucherie, Richard J. & Monsuur, Herman, 2017. "An interdiction game on a queueing network with multiple intruders," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1069-1080.
    3. Ríos Insua, David & Cano, Javier & Pellot, Michael & Ortega, Ricardo, 2016. "Multithreat multisite protection: A security case study," European Journal of Operational Research, Elsevier, vol. 252(3), pages 888-899.
    4. Oléron Evans, Thomas P. & Bishop, Steven R., 2013. "Static search games played over graphs and general metric spaces," European Journal of Operational Research, Elsevier, vol. 231(3), pages 667-689.
    5. Lidbetter, Thomas, 2017. "On the approximation ratio of the Random Chinese Postman Tour for network search," European Journal of Operational Research, Elsevier, vol. 263(3), pages 782-788.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoroa, N. & Fernández-Sáez, M.J. & Zoroa, P., 2012. "Patrolling a perimeter," European Journal of Operational Research, Elsevier, vol. 222(3), pages 571-582.
    2. Steve Alpern & Alec Morton & Katerina Papadaki, 2011. "Patrolling Games," Operations Research, INFORMS, vol. 59(5), pages 1246-1257, October.
    3. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    4. Chan Y. Han & Brian J. Lunday & Matthew J. Robbins, 2016. "A Game Theoretic Model for the Optimal Location of Integrated Air Defense System Missile Batteries," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 405-416, August.
    5. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    6. Alexander Shiroky & Andrey Kalashnikov, 2021. "Mathematical Problems of Managing the Risks of Complex Systems under Targeted Attacks with Known Structures," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    7. Bravard, Christophe & Charroin, Liza & Touati, Corinne, 2017. "Optimal design and defense of networks under link attacks," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 62-79.
    8. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    9. Laan, Corine M. & van der Mijden, Tom & Barros, Ana Isabel & Boucherie, Richard J. & Monsuur, Herman, 2017. "An interdiction game on a queueing network with multiple intruders," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1069-1080.
    10. Craig R. Fox & Robert T. Clemen, 2005. "Subjective Probability Assessment in Decision Analysis: Partition Dependence and Bias Toward the Ignorance Prior," Management Science, INFORMS, vol. 51(9), pages 1417-1432, September.
    11. Meijerink, Gerdien W., 2007. "If services aren't delivered, people won't pay: the role of measurement problems and monitoring in Payments for Environmental Services," 106th Seminar, October 25-27, 2007, Montpellier, France 7948, European Association of Agricultural Economists.
    12. Li, Yapeng & Qiao, Shun & Deng, Ye & Wu, Jun, 2019. "Stackelberg game in critical infrastructures from a network science perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 705-714.
    13. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    14. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    15. Andrew Samuel & Seth D. Guikema, 2012. "Resource Allocation for Homeland Defense: Dealing with the Team Effect," Decision Analysis, INFORMS, vol. 9(3), pages 238-252, September.
    16. Nguyen, Di H. & Smith, J. Cole, 2022. "Network interdiction with asymmetric cost uncertainty," European Journal of Operational Research, Elsevier, vol. 297(1), pages 239-251.
    17. Ghaneshvar Ramineni & Nafiseh Ghorbani-Renani & Kash Barker & Andrés D. González & Talayeh Razzaghi & Sridhar Radhakrishnan, 2023. "Machine learning approaches to modeling interdependent network restoration time," Environment Systems and Decisions, Springer, vol. 43(1), pages 22-35, March.
    18. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    19. Zhang, Laobing & Reniers, Genserik & Qiu, Xiaogang, 2019. "Playing chemical plant protection game with distribution-free uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    20. Andrew Yim, 2009. "Efficient Committed Budget for Implementing Target Audit Probability for Many Inspectees," Management Science, INFORMS, vol. 55(12), pages 2000-2018, December.

    More about this item

    Keywords

    ISI; games; noncooperative; military; search/surveillance; decision analysis; risk; networks/graphs;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:32210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.