IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/115187.html
   My bibliography  Save this paper

Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests

Author

Listed:
  • Duarte, Belmiro P.M.
  • Atkinson, Anthony C.
  • P. Singh, Satya
  • S. Reis, Marco

Abstract

We find experimental plans for hypothesis testing when a prior ordering of experimental groups or treatments is expected. Despite the practical interest of the topic, namely in dose finding, algorithms for systematically calculating good plans are still elusive. Here, we consider the Intersection-Union principle for constructing optimal experimental designs for testing hypotheses about ordered treatments. We propose an optimization-based formulation to handle the problem when the power of the test is to be maximized. This formulation yields a complex objective function which we handle with a surrogate-based optimizer. The algorithm proposed is demonstrated for several ordering relations. The relationship between designs maximizing power for the Intersection-Union Test (IUT) and optimality criteria used for linear regression models is analyzed; we demonstrate that IUT-based designs are well approximated by C–optimal designs and maximum entropy sampling designs while DA-optimal designs are equivalent to balanced designs. Theoretical and numerical results supporting these relations are presented.

Suggested Citation

  • Duarte, Belmiro P.M. & Atkinson, Anthony C. & P. Singh, Satya & S. Reis, Marco, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," LSE Research Online Documents on Economics 115187, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:115187
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/115187/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ori Davidov & Amir Herman, 2012. "Ordinal dominance curve based inference for stochastically ordered distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(5), pages 825-847, November.
    2. Juliane Müller & Marcus Day, 2019. "Surrogate Optimization of Computationally Expensive Black-Box Problems with Hidden Constraints," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 689-702, October.
    3. T. W. Waite & D. C. Woods, 2015. "Designs for generalized linear models with random block effects via information matrix approximations," Biometrika, Biometrika Trust, vol. 102(3), pages 677-693.
    4. Samuel Rosa, 2018. "Optimal designs for treatment comparisons represented by graphs," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 479-503, October.
    5. Rommel G. Regis & Christine A. Shoemaker, 2007. "A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 497-509, November.
    6. ANSTREICHER, Kurt M. & FAMPA, Marcia & LEE , Jon & WILLIAMS, Joy, 2001. "Maximum-entropy remote sampling," LIDAM Reprints CORE 1494, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Satya Prakash Singh & Ori Davidov, 2019. "On the design of experiments with ordered treatments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(5), pages 881-900, November.
    8. Singh, Satya Prakash & Davidov, Ori, 2021. "On efficient exact experimental designs for ordered treatments," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    9. OrI Davidov & Konstantinos Fokianos & George Iliopoulos, 2014. "Semiparametric Inference for the Two-way Layout Under Order Restrictions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 622-638, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belmiro P. M. Duarte & Anthony C. Atkinson & Satya P. Singh & Marco S. Reis, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," Statistical Papers, Springer, vol. 64(2), pages 587-615, April.
    2. Juliane Müller & Jangho Park & Reetik Sahu & Charuleka Varadharajan & Bhavna Arora & Boris Faybishenko & Deborah Agarwal, 2021. "Surrogate optimization of deep neural networks for groundwater predictions," Journal of Global Optimization, Springer, vol. 81(1), pages 203-231, September.
    3. Wenyu Wang & Christine A. Shoemaker, 2023. "Reference Vector Assisted Candidate Search with Aggregated Surrogate for Computationally Expensive Many Objective Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 318-334, March.
    4. Juliane Müller, 2017. "SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 581-596, November.
    5. Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
    6. Ori Davidov & George Iliopoulos, 2012. "Estimating a distribution function subject to a stochastic order restriction: a comparative study," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 923-933, December.
    7. Juliane Müller & Christine Shoemaker & Robert Piché, 2014. "SO-I: a surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications," Journal of Global Optimization, Springer, vol. 59(4), pages 865-889, August.
    8. Heng Wang & Ping-Shou Zhong, 2017. "Order-restricted inference for means with missing values," Biometrics, The International Biometric Society, vol. 73(3), pages 972-980, September.
    9. Zhe Zhou & Fusheng Bai, 2018. "An adaptive framework for costly black-box global optimization based on radial basis function interpolation," Journal of Global Optimization, Springer, vol. 70(4), pages 757-781, April.
    10. Jiming Jiang & Matt P. Wand & Aishwarya Bhaskaran, 2022. "Usable and precise asymptotics for generalized linear mixed model analysis and design," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 55-82, February.
    11. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    12. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    13. Nicolau Andrés-Thió & Mario Andrés Muñoz & Kate Smith-Miles, 2022. "Bifidelity Surrogate Modelling: Showcasing the Need for New Test Instances," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3007-3022, November.
    14. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    15. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    16. Logan Mathesen & Giulia Pedrielli & Szu Hui Ng & Zelda B. Zabinsky, 2021. "Stochastic optimization with adaptive restart: a framework for integrated local and global learning," Journal of Global Optimization, Springer, vol. 79(1), pages 87-110, January.
    17. Ori Davidov & Shyamal Peddada, 2013. "Testing for the Multivariate Stochastic Order among Ordered Experimental Groups with Application to Dose–Response Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 982-990, December.
    18. Richard T. Lyons & Richard C. Peralta & Partha Majumder, 2020. "Comparing Single-Objective Optimization Protocols for Calibrating the Birds Nest Aquifer Model—A Problem Having Multiple Local Optima," IJERPH, MDPI, vol. 17(3), pages 1-10, January.
    19. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
    20. Chen, Mingjie & Tompson, Andrew F.B. & Mellors, Robert J. & Abdalla, Osman, 2015. "An efficient optimization of well placement and control for a geothermal prospect under geological uncertainty," Applied Energy, Elsevier, vol. 137(C), pages 352-363.

    More about this item

    Keywords

    optimal design of experiments; hypothesis testing; ordered treatments; surrogate optimization; power function; alphabetic optimality;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:115187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.