IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v102y2015i3p677-693..html
   My bibliography  Save this article

Designs for generalized linear models with random block effects via information matrix approximations

Author

Listed:
  • T. W. Waite
  • D. C. Woods

Abstract

The selection of optimal designs for generalized linear mixed models is complicated by the fact that the Fisher information matrix, on which most optimality criteria depend, is computationally expensive to evaluate. We provide two novel approximations that reduce the computational cost of evaluating the information matrix by complete enumeration of response outcomes, or Monte Carlo approximations thereof: an asymptotic approximation that is accurate when there is strong dependence between observations in the same block; and an approximation via kriging interpolators. For logistic random intercept models, we show how interpolation can be especially effective for finding pseudo-Bayesian designs that incorporate uncertainty in the values of the model parameters. The new results are used to evaluate the efficiency, for estimating conditional models, of optimal designs from closed-form approximations to the information matrix derived from marginal models. Correcting for the marginal attenuation of parameters in binary-response models yields much improved designs, typically with very high efficiencies. However, in some experiments exhibiting strong dependence, designs for marginal models may still be inefficient for conditional modelling. Our asymptotic results provide some theoretical insights into why such inefficiencies occur.

Suggested Citation

  • T. W. Waite & D. C. Woods, 2015. "Designs for generalized linear models with random block effects via information matrix approximations," Biometrika, Biometrika Trust, vol. 102(3), pages 677-693.
  • Handle: RePEc:oup:biomet:v:102:y:2015:i:3:p:677-693.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asv005
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ueckert, Sebastian & Mentré, France, 2017. "A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 203-219.
    2. Jiming Jiang & Matt P. Wand & Aishwarya Bhaskaran, 2022. "Usable and precise asymptotics for generalized linear mixed model analysis and design," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 55-82, February.
    3. Belmiro P. M. Duarte & Anthony C. Atkinson & Satya P. Singh & Marco S. Reis, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," Statistical Papers, Springer, vol. 64(2), pages 587-615, April.
    4. Duarte, Belmiro P.M. & Atkinson, Anthony C. & P. Singh, Satya & S. Reis, Marco, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," LSE Research Online Documents on Economics 115187, London School of Economics and Political Science, LSE Library.
    5. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2021. "Optimal designs for discrete-time survival models with random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 300-332, April.
    6. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2018. "Robust population designs for longitudinal linear regression model with a random intercept," Computational Statistics, Springer, vol. 33(2), pages 903-931, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:102:y:2015:i:3:p:677-693.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.