Mixed poisson regression models with varying dispersion arising from non-conjugate mixing distributions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Perline, Richard, 1998. "Mixed Poisson distributions tail equivalent to their mixing distributions," Statistics & Probability Letters, Elsevier, vol. 38(3), pages 229-233, June.
- Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
- Rigby, R.A. & Stasinopoulos, D.M. & Akantziliotou, C., 2008. "A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 381-393, December.
- George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tzougas, George & Jeong, Himchan, 2021. "An expectation-maximization algorithm for the exponential-generalized inverse Gaussian regression model with varying dispersion and shape for modelling the aggregate claim amount," LSE Research Online Documents on Economics 108210, London School of Economics and Political Science, LSE Library.
- George Tzougas & Himchan Jeong, 2021. "An Expectation-Maximization Algorithm for the Exponential-Generalized Inverse Gaussian Regression Model with Varying Dispersion and Shape for Modelling the Aggregate Claim Amount," Risks, MDPI, vol. 9(1), pages 1-17, January.
- Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
- Syuhada, Khreshna & Tjahjono, Venansius & Hakim, Arief, 2024. "Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting," Applied Mathematics and Computation, Elsevier, vol. 467(C).
- Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
- Tzougas, George & di Cerchiara, Alice Pignatelli, 2021. "Bivariate mixed Poisson regression models with varying dispersion," LSE Research Online Documents on Economics 114327, London School of Economics and Political Science, LSE Library.
- Willmot, Gordon E. & Woo, Jae-Kyung, 2022. "Remarks on a generalized inverse Gaussian type integral with applications," Applied Mathematics and Computation, Elsevier, vol. 430(C).
- Moritz Berger & Gerhard Tutz, 2021. "Transition models for count data: a flexible alternative to fixed distribution models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1259-1283, October.
- Baíllo, A. & Berrendero, J.R. & Cárcamo, J., 2009. "Tests for zero-inflation and overdispersion: A new approach based on the stochastic convex order," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2628-2639, May.
- A. Baccini & L. Barabesi & M. Cioni & C. Pisani, 2014. "Crossing the hurdle: the determinants of individual scientific performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 2035-2062, December.
- Marcelo Bourguignon & Diego I. Gallardo & Rodrigo M. R. Medeiros, 2022. "A simple and useful regression model for underdispersed count data based on Bernoulli–Poisson convolution," Statistical Papers, Springer, vol. 63(3), pages 821-848, June.
- Vilhelm Verendel, 2023. "Tracking artificial intelligence in climate inventions with patent data," Nature Climate Change, Nature, vol. 13(1), pages 40-47, January.
- José Rodríguez-Avi & María José Olmo-Jiménez, 2017. "A regression model for overdispersed data without too many zeros," Statistical Papers, Springer, vol. 58(3), pages 749-773, September.
- Fatemeh Hassanzadeh & Iraj Kazemi, 2017. "Regression modeling of one-inflated positive count data," Statistical Papers, Springer, vol. 58(3), pages 791-809, September.
- Liu, Yafen & He, Zhen & Shu, Lianjie & Wu, Zhang, 2009. "Statistical computation and analyses for attribute events," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3412-3425, July.
- George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
- R. Maya & Jie Huang & M. R. Irshad & Fukang Zhu, 2024. "On Poisson Moment Exponential Distribution with Associated Regression and INAR(1) Process," Annals of Data Science, Springer, vol. 11(5), pages 1741-1759, October.
- Cordeiro, Gauss M. & Andrade, Marinho G. & de Castro, Mário, 2009. "Power series generalized nonlinear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1155-1166, February.
- Rahma Abid & Célestin C. Kokonendji & Afif Masmoudi, 2021. "On Poisson-exponential-Tweedie models for ultra-overdispersed count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 1-23, March.
- Qiang Jia & Yong Zhang & Lei Cao, 2019. "Response of Anatidae Abundance to Environmental Factors in the Middle and Lower Yangtze River Floodplain, China," Sustainability, MDPI, vol. 11(23), pages 1-10, December.
More about this item
Keywords
claim frequency; EM algorithm; non-life insurance; regression structures on the mean and dispersion parameters;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2022-02-28 (Econometrics)
- NEP-IAS-2022-02-28 (Insurance Economics)
- NEP-ORE-2022-02-28 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:113616. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.