IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i5d10.1007_s40745-023-00476-2.html
   My bibliography  Save this article

On Poisson Moment Exponential Distribution with Associated Regression and INAR(1) Process

Author

Listed:
  • R. Maya

    (University College)

  • Jie Huang

    (Chang’an University)

  • M. R. Irshad

    (Cochin University of Science and Technology)

  • Fukang Zhu

    (Jilin University)

Abstract

Numerous studies have emphasised the significance of count data modeling and its applications to phenomena that occur in the real world. From this perspective, this article examines the traits and applications of the Poisson-moment exponential (PME) distribution in the contexts of time series analysis and regression analysis for real-world phenomena. The PME distribution is a novel one-parameter discrete distribution that can be used as a powerful alternative for the existing distributions for modeling over-dispersed count datasets. The advantages of the PME distribution, including the simplicity of the probability mass function and the explicit expressions of the functions of all the statistical properties, drove us to develop the inferential aspects and learn more about its practical applications. The unknown parameter is estimated using both maximum likelihood and moment estimation methods. Also, we present a parametric regression model based on the PME distribution for the count datasets. To strengthen the utility of the suggested distribution, we propose a new first-order integer-valued autoregressive (INAR(1)) process with PME innovations based on binomial thinning for modeling integer-valued time series with over-dispersion. Application to four real datasets confirms the empirical significance of the proposed model.

Suggested Citation

  • R. Maya & Jie Huang & M. R. Irshad & Fukang Zhu, 2024. "On Poisson Moment Exponential Distribution with Associated Regression and INAR(1) Process," Annals of Data Science, Springer, vol. 11(5), pages 1741-1759, October.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:5:d:10.1007_s40745-023-00476-2
    DOI: 10.1007/s40745-023-00476-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-023-00476-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-023-00476-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emrah Altun & Gauss M. Cordeiro & Miroslav M. Ristić, 2022. "An one-parameter compounding discrete distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(8), pages 1935-1956, June.
    2. Mullahy, John, 1997. "Heterogeneity, Excess Zeros, and the Structure of Count Data Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 337-350, May-June.
    3. Schweer, Sebastian & Weiß, Christian H., 2014. "Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 267-284.
    4. Tito Lívio & Naushad Mamode Khan & Marcelo Bourguignon & Hassan S. Bakouch, 2018. "An INAR(1) model with Poisson-Lindley innovations," Economics Bulletin, AccessEcon, vol. 38(3), pages 1505-1513.
    5. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    6. Rigby, R.A. & Stasinopoulos, D.M. & Akantziliotou, C., 2008. "A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 381-393, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammed Rasheed Irshad & Sreedeviamma Aswathy & Radhakumari Maya & Saralees Nadarajah, 2023. "New One-Parameter Over-Dispersed Discrete Distribution and Its Application to the Nonnegative Integer-Valued Autoregressive Model of Order One," Mathematics, MDPI, vol. 12(1), pages 1-14, December.
    2. Radhakumari Maya & Christophe Chesneau & Anuresha Krishna & Muhammed Rasheed Irshad, 2022. "Poisson Extended Exponential Distribution with Associated INAR(1) Process and Applications," Stats, MDPI, vol. 5(3), pages 1-18, August.
    3. Ané van der Merwe & Johannes T. Ferreira, 2022. "An Adapted Discrete Lindley Model Emanating from Negative Binomial Mixtures for Autoregressive Counts," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    4. Emrah Altun & Naushad Mamode Khan, 2022. "Modelling with the Novel INAR(1)-PTE Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1735-1751, September.
    5. Durgesh Samariya & Amit Thakkar, 2023. "A Comprehensive Survey of Anomaly Detection Algorithms," Annals of Data Science, Springer, vol. 10(3), pages 829-850, June.
    6. Aidin Zehtab-Salmasi & Ali-Reza Feizi-Derakhshi & Narjes Nikzad-Khasmakhi & Meysam Asgari-Chenaghlu & Saeideh Nabipour, 2023. "Multimodal Price Prediction," Annals of Data Science, Springer, vol. 10(3), pages 619-635, June.
    7. Rui Baptista & Joana Mendonça, 2010. "Proximity to knowledge sources and the location of knowledge-based start-ups," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 45(1), pages 5-29, August.
    8. Marcelo Bourguignon, 2016. "Poisson–geometric INAR(1) process for modeling count time series with overdispersion," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(3), pages 176-192, August.
    9. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    10. Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2024. "Two-step conditional least squares estimation in ADCINAR(1) process, revisited," Statistics & Probability Letters, Elsevier, vol. 206(C).
    11. Patrick Osatohanmwen & Eferhonore Efe-Eyefia & Francis O. Oyegue & Joseph E. Osemwenkhae & Sunday M. Ogbonmwan & Benson A. Afere, 2022. "The Exponentiated Gumbel–Weibull {Logistic} Distribution with Application to Nigeria’s COVID-19 Infections Data," Annals of Data Science, Springer, vol. 9(5), pages 909-943, October.
    12. Petar Radanliev & David Roure & Rob Walton & Max Kleek & Omar Santos & La’Treall Maddox, 2022. "What Country, University, or Research Institute, Performed the Best on Covid-19 During the First Wave of the Pandemic?," Annals of Data Science, Springer, vol. 9(5), pages 1049-1067, October.
    13. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    14. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    15. Boris Aleksandrov & Christian H. Weiß, 2020. "Testing the dispersion structure of count time series using Pearson residuals," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 325-361, September.
    16. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    17. Anjan Mukherjee & Abhik Mukherjee, 2022. "Interval-Valued Intuitionistic Fuzzy Soft Rough Approximation Operators and Their Applications in Decision Making Problem," Annals of Data Science, Springer, vol. 9(3), pages 611-625, June.
    18. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    19. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    20. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:5:d:10.1007_s40745-023-00476-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.