IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v13y2023i1d10.1038_s41558-022-01536-w.html
   My bibliography  Save this article

Tracking artificial intelligence in climate inventions with patent data

Author

Listed:
  • Vilhelm Verendel

    (Chalmers University of Technology)

Abstract

Artificial intelligence (AI) is spreading rapidly in many technology areas, and AI inventions may help climate change mitigation and adaptation. Previous studies of climate-related AI mainly rely on expert studies of literature, not large-scale data. Here I present an approach to track the relation between AI and climate inventions on an economy-wide scale. Analysis of over 6 million US patents, 1976 to 2019, shows that within climate patents, AI is referred to most often in transportation, energy and industrial production technologies. In highly cited patents, AI occurs more frequently in adaptation and transport than in other climate mitigation areas. AI in climate patents was associated with around 30–100% more subsequent inventions when counting all technologies. Yet AI-climate patents led to a greater share of citations from outside the climate field than non-AI-climate patents. This suggests the importance of tracking both increased invention activity and the areas where subsequent inventions emerge.

Suggested Citation

  • Vilhelm Verendel, 2023. "Tracking artificial intelligence in climate inventions with patent data," Nature Climate Change, Nature, vol. 13(1), pages 40-47, January.
  • Handle: RePEc:nat:natcli:v:13:y:2023:i:1:d:10.1038_s41558-022-01536-w
    DOI: 10.1038/s41558-022-01536-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-022-01536-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-022-01536-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rigby, R.A. & Stasinopoulos, D.M. & Akantziliotou, C., 2008. "A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 381-393, December.
    2. Matt Marx & Aaron Fuegi, 2020. "Reliance on science: Worldwide front‐page patent citations to scientific articles," Strategic Management Journal, Wiley Blackwell, vol. 41(9), pages 1572-1594, September.
    3. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianluca Biggi & Martina Iori & Julia Mazzei & Andrea Mina, 2024. "Green Intelligence: The AI content of green technologies," LEM Papers Series 2024/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2024. "Global climate change mitigation technology diffusion: A network perspective," Energy Economics, Elsevier, vol. 133(C).
    3. Podrecca, Matteo & Culot, Giovanna & Tavassoli, Sam & Orzes, Guido, 2024. "Artificial intelligence for climate change: a patent analysis in the manufacturing sector," Papers in Innovation Studies 2024/12, Lund University, CIRCLE - Centre for Innovation Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzougas, George & Vrontos, Spyridon D. & Frangos, Nickolaos E., 2015. "Risk classification for claim counts and losses using regression models for location, scale and shape," LSE Research Online Documents on Economics 70921, London School of Economics and Political Science, LSE Library.
    2. Cordeiro, Gauss M. & Andrade, Marinho G. & de Castro, Mário, 2009. "Power series generalized nonlinear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1155-1166, February.
    3. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    4. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    5. Nathaniel Geiger & Bryan McLaughlin & John Velez, 2021. "Not all boomers: temporal orientation explains inter- and intra-cultural variability in the link between age and climate engagement," Climatic Change, Springer, vol. 166(1), pages 1-20, May.
    6. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    7. Seokbeom Kwon & Jan Youtie & Alan Porter & Nils Newman, 2024. "How does regulatory uncertainty shape the innovation process? Evidence from the case of nanomedicine," The Journal of Technology Transfer, Springer, vol. 49(1), pages 262-302, February.
    8. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    9. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    10. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    11. Riccardo De Bin & Vegard Grødem Stikbakke, 2023. "A boosting first-hitting-time model for survival analysis in high-dimensional settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 420-440, April.
    12. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    13. Hötte, Kerstin, 2023. "Demand-pull, technology-push, and the direction of technological change," Research Policy, Elsevier, vol. 52(5).
    14. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.
    15. Menghao Wang & Shanhu Jiang & Liliang Ren & Chong-Yu Xu & Linyong Wei & Hao Cui & Fei Yuan & Yi Liu & Xiaoli Yang, 2022. "The Development of a Nonstationary Standardised Streamflow Index Using Climate and Reservoir Indices as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1377-1392, March.
    16. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    17. Giampiero Marra & Matteo Fasiolo & Rosalba Radice & Rainer Winkelmann, 2023. "A flexible copula regression model with Bernoulli and Tweedie margins for estimating the effect of spending on mental health," Health Economics, John Wiley & Sons, Ltd., vol. 32(6), pages 1305-1322, June.
    18. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    19. Fan, Jianqing & Feng, Yang & Xia, Lucy, 2020. "A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models," Journal of Econometrics, Elsevier, vol. 218(1), pages 119-139.
    20. Kuntz, Laura-Chloé, 2020. "Beta dispersion and market timing," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 235-256.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:13:y:2023:i:1:d:10.1038_s41558-022-01536-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.