IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/112612.html
   My bibliography  Save this paper

Numeraire-invariant quadratic hedging and mean–variance portfolio allocation

Author

Listed:
  • Černý, Aleš
  • Czichowsky, Christoph
  • Kallsen, Jan

Abstract

The paper investigates quadratic hedging in a general semimartingale market that does not necessarily contain a risk-free asset. An equivalence result for hedging with and without numeraire change is established. This permits direct computation of the optimal strategy without choosing a reference asset and/or performing a numeraire change. New explicit expressions for optimal strategies are obtained, featuring the use of oblique projections that provide unified treatment of the case with and without a risk-free asset. The main result advances our understanding of the efficient frontier formation in the most general case where a risk-free asset may not be present. Several illustrations of the numeraire-invariant approach are given.

Suggested Citation

  • Černý, Aleš & Czichowsky, Christoph & Kallsen, Jan, 2021. "Numeraire-invariant quadratic hedging and mean–variance portfolio allocation," LSE Research Online Documents on Economics 112612, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:112612
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/112612/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Richard, Scott F, 1987. "The Role of Conditioning Information in Deducing Testable," Econometrica, Econometric Society, vol. 55(3), pages 587-613, May.
    2. Andrew E. B. Lim, 2004. "Quadratic Hedging and Mean-Variance Portfolio Selection with Random Parameters in an Incomplete Market," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 132-161, February.
    3. Yao, Haixiang & Li, Zhongfei & Chen, Shumin, 2014. "Continuous-time mean–variance portfolio selection with only risky assets," Economic Modelling, Elsevier, vol. 36(C), pages 244-251.
    4. Sara Biagini & Aleš Černý, 2020. "Convex duality and Orlicz spaces in expected utility maximization," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 85-127, January.
    5. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    6. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    7. Takuji Arai, 2005. "An extension of mean-variance hedging to the discontinuous case," Finance and Stochastics, Springer, vol. 9(1), pages 129-139, January.
    8. Alev{s} v{C}ern'y & Johannes Ruf, 2020. "Simplified calculus for semimartingales: Multiplicative compensators and changes of measure," Papers 2006.12765, arXiv.org, revised May 2023.
    9. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "Hedging Derivative Securities and Incomplete Markets: An (epsilon)-Arbitrage Approach," Operations Research, INFORMS, vol. 49(3), pages 372-397, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alev{s} v{C}ern'y & Christoph Czichowsky & Jan Kallsen, 2021. "Numeraire-invariant quadratic hedging and mean--variance portfolio allocation," Papers 2110.09416, arXiv.org, revised Jan 2023.
    2. Alev{s} v{C}ern'y, 2020. "The Hansen ratio in mean--variance portfolio theory," Papers 2007.15980, arXiv.org.
    3. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    4. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    5. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    6. Patrick Gagliardini & Christian Gouriéroux, 2011. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 237-280, Spring.
    7. Zhang, Caibin & Liang, Zhibin, 2022. "Optimal time-consistent reinsurance and investment strategies for a jump–diffusion financial market without cash," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    8. Jaroslav Borovička & Lars Peter Hansen & José A. Scheinkman, 2016. "Misspecified Recovery," Journal of Finance, American Finance Association, vol. 71(6), pages 2493-2544, December.
    9. Carrasco-Gutierrez, Carlos Enrique & Issler, João Victor, 2012. "Constructing common-factor portfolios," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 731, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    10. Ferreira, Alex & Matos, Paulo, 2020. "Precautionary risks for an open economy," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 154-167.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Wan-Kai Pang & Yuan-Hua Ni & Xun Li & Ka-Fai Cedric Yiu, 2013. "Continuous-time Mean-Variance Portfolio Selection with Stochastic Parameters," Papers 1302.6669, arXiv.org.
    13. Jonathan Fletcher & Andrew Marshall, 2005. "The Performance of UK International Unit Trusts," European Financial Management, European Financial Management Association, vol. 11(3), pages 365-386, June.
    14. Alev{s} v{C}ern'y & Jan Kallsen, 2007. "On the Structure of General Mean-Variance Hedging Strategies," Papers 0708.1715, arXiv.org, revised Jul 2017.
    15. Cogley, Timothy, 2002. "Idiosyncratic risk and the equity premium: evidence from the consumer expenditure survey," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 309-334, March.
    16. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    17. Zhang, Miao & Chen, Ping & Yao, Haixiang, 2017. "Mean-variance portfolio selection with only risky assets under regime switching," Economic Modelling, Elsevier, vol. 62(C), pages 35-42.
    18. Lars Peter Hansen, 2017. "Comment on "Survey Measurement of Probabilistic Economic Expectations: Progress and Promise"," NBER Chapters, in: NBER Macroeconomics Annual 2017, volume 32, pages 479-489, National Bureau of Economic Research, Inc.
    19. Tu, Teng-Tsai, 1998. "An entropic approach to equity market integration and consumption-based capital asset pricing models," ISU General Staff Papers 1998010108000012895, Iowa State University, Department of Economics.
    20. Gian Maria Tomat, 2020. "Present Value Models and the Behaviour of European Financial Markets," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 6(3), pages 493-520, November.

    More about this item

    Keywords

    mean–variance portfolio selection; quadratic hedging; numeraire change; oblique projection; opportunity-neutral measure; mean–variance hedging;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:112612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.