IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/0514.html
   My bibliography  Save this paper

Estimation of a Mixture via the Empirical Characteristic Function

Author

Listed:
  • Marine H. Carrasco

    (CREST)

  • Jean-Pierre Florens

    (IDEI - GREMAQ)

Abstract

In many circumstances, the likelihood function does not have a simple tractable expression. The main examples discussed in the paper are the convolution and the mixture of distributions. Finite mixture models are commonly used to model data from a population composed of a finite number of homogeneous subpopulations. An example of application is the estimation of a cost function in presence of multiple technologies of production (see Beard, Caudill, and Gropper, 1991). Ignoring heterogeneity may lead to seriously misleading results. Convolution appears in models that include person-specific hetorogeneity that is not observable (see Lancaster, 1990). For such models, estimation using the characteristic function offers a nice alternative to maximum likelihood method. It has been shown by Feuerverger and McDunnough (1981) that the empirical characteristic function yields an efficient estimator when used with a specific weighting function. However, this weighting function depends on the likelihood which is of course unknown. This poses the problem of the implementation of this method. Here we show that the empirical characteristic function yields a continuum of moment conditions that can be handled by the method developed by Carrasco and Florens (1999). We simply estimate the parameters of the model by GMM based on this continuum of moment conditions. We show that this method delivers asymptotically efficient estimators while being relatively easy to implement. A close investigation shows that Carrasco-Florens' results gives a rationale to Feuerverger and McDunnough's approach and is much more general since it applies to any continuum of moments. Using our continuous GMM method avoids the explicit derivation of the optimal weighting function as in Feuerverger and McDunnough. We give a general method to estimate it from the data. Next, we allow for the presence of covariates in the model. We discuss the efficient estimation based on the conditional characteristic function conditionally on exogenous variables. As long as identifiability holds, our estimators reach the Cramer Rao efficiency bound for any choice of instruments. The issue on optimal instruments can be completely ignored here. The way we choose the weight in our GMM objective function guarantees efficiency. Finally, we intend to complete the paper by a Monte Carlo experiment in order to assess the small sample properties of our estimators.

Suggested Citation

  • Marine H. Carrasco & Jean-Pierre Florens, 2000. "Estimation of a Mixture via the Empirical Characteristic Function," Econometric Society World Congress 2000 Contributed Papers 0514, Econometric Society.
  • Handle: RePEc:ecm:wc2000:0514
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/0514.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morduch, Jonathan J. & Stern, Hal S., 1997. "Using mixture models to detect sex bias in health outcomes in Bangladesh," Journal of Econometrics, Elsevier, vol. 77(1), pages 259-276, March.
    2. Beard, T Randolph & Caudill, Steven B & Gropper, Daniel M, 1991. "Finite Mixture Estimation of Multiproduct Cost Functions," The Review of Economics and Statistics, MIT Press, vol. 73(4), pages 654-664, November.
    3. Mundlak, Yair & Yahav, Joseph A, 1981. "Random Effects, Fixed Effects, Convolution, and Separation," Econometrica, Econometric Society, vol. 49(6), pages 1399-1416, November.
    4. Mandelbrot, Benoit B, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices: Comment," Econometrica, Econometric Society, vol. 41(1), pages 157-159, January.
    5. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(6), pages 797-834, December.
    6. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marine Carrasco & Jean-Pierre Florens, 2000. "Efficient GMM Estimation Using the Empirical Characteristic Function," Working Papers 2000-33, Center for Research in Economics and Statistics.
    2. Rangel, José Gonzalo, 2011. "Macroeconomic news, announcements, and stock market jump intensity dynamics," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1263-1276, May.
    3. Riccardo Rebonato, 2015. "High-frequency Trading," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1267-1271, August.
    4. Robert J. Elliott & Carlton-James U. Osakwe, 2006. "Option Pricing for Pure Jump Processes with Markov Switching Compensators," Finance and Stochastics, Springer, vol. 10(2), pages 250-275, April.
    5. J. Doyne Farmer & John Geanakoplos, 2008. "The virtues and vices of equilibrium and the future of financial economics," Papers 0803.2996, arXiv.org.
    6. Benjamin Blau & Matthew Hill & Hao Wang, 2011. "REIT Short Sales and Return Predictability," The Journal of Real Estate Finance and Economics, Springer, vol. 42(4), pages 481-503, May.
    7. Shuangzhe Liu & Chris Heyde & Wing-Keung Wong, 2011. "Moment matrices in conditional heteroskedastic models under elliptical distributions with applications in AR-ARCH models," Statistical Papers, Springer, vol. 52(3), pages 621-632, August.
    8. Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "A Compound Multifractal Model for High-Frequency Asset Returns," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-05, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    9. Benoit B. Mandelbrot, 2005. "Parallel cartoons of fractal models of finance," Annals of Finance, Springer, vol. 1(2), pages 179-192, October.
    10. Stock, James H., 1987. "Measuring Business Cycle Time," Scholarly Articles 3425950, Harvard University Department of Economics.
    11. Gebka, Bartosz, 2006. "Leaders and Laggards: International Evidence on Spillovers in Returns, Variance, and Trading Volume," Working Paper Series 2006,1, European University Viadrina Frankfurt (Oder), The Postgraduate Research Programme Capital Markets and Finance in the Enlarged Europe.
    12. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Market Time and Asset Price Movements Theory and Estimation," CIRANO Working Papers 95s-32, CIRANO.
    13. Li, Junye & Favero, Carlo & Ortu, Fulvio, 2012. "A spectral estimation of tempered stable stochastic volatility models and option pricing," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3645-3658.
    14. Carrasco, Marine & Chernov, Mikhaël & Florens, Jean-Pierre & Ghysels, Eric, 2000. "Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions," IDEI Working Papers 116, Institut d'Économie Industrielle (IDEI), Toulouse, revised 2002.
    15. Borusyak, K., 2011. "Nonlinear Dynamics of the Russian Stock Market in Problems of Risk Management," Journal of the New Economic Association, New Economic Association, issue 11, pages 85-105.
    16. Phillip Cagan, 1975. "Changes in the Recession Behavior of Wholesale Prices in the 1920s and Post-World War II," NBER Chapters, in: Explorations in Economic Research, Volume 2, number 1, pages 54-104, National Bureau of Economic Research, Inc.
    17. Kerr Hatrick & Mike So & S. Chung & R. Deng, 2011. "Dynamic Relationship among Intraday Realized Volatility, Volume and Number of Trades," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(3), pages 291-317, September.
    18. Borochin, Paul & Rush, Stephen, 2022. "Information networks in the financial sector and systemic risk," Journal of Banking & Finance, Elsevier, vol. 134(C).
    19. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    20. L. Ingber, 1996. "Canonical momenta indicators of financial markets and neocortical EEG," Lester Ingber Papers 96cm, Lester Ingber.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.