IDEAS home Printed from https://ideas.repec.org/p/ecm/nasm04/228.html
   My bibliography  Save this paper

Bootstrap correcting the score test

Author

Listed:
  • Dirk Hoorelbeke

Abstract

The Lagrange multiplier test, or score test, suggested independently by Aitchison and Silvey (1958) and Rao (1948), tests for parametric restrictions. Although the score test is an intuitively appealing and often used procedure, the exact distribution of the score test statistic is generally unknown and is often approximated by its first-order asymptotic $\chi^2$ distribution. In problems of econometric inference, however, first-order asymptotic theory may be a poor guide, and this is also true for the score test, as demonstrated in different Monte Carlo studies. See e.g. Breusch and Pagan (1979), Bera and Jarque (1981), Davidson and MacKinnon (1983, 1984, 1992), Chesher and Spady (1991) and Horowitz (1994), among many others. One can use the bootstrap distribution of the score test statistic to obtain a critical value. This can give already satisfactory results in terms of ERP (error in rejection probability: the difference between nominal and actual rejection probability under the null hypothesis). However, the score test uses a quadratic form statistic. In the construction and implementation of such a quadratic form statistic two important aspects, which determine the performance of the test (both under the null and the alternative), are (i) the weighting matrix (the covariance matrix of the score vector) and (ii) the critical value. Since the score test statistic is asymptotically pivotal, the bootstrap critical value is second-order correct. However, one can achieve better performance, as well in terms of ERP as of power, by using a better estimate of the weighting matrix used in the quadratic form. In this paper we propose a bootstrap-based method to obtain both a second-order correct estimate of the covariance matrix of the score vector and a second-order correct critical value, using only one round of simulations (instead of B1 + B1 x B2). The method works as follows. Assume there exists a matrix A such that the score vector premultiplied by A is asymptotically pivotal. An obvious choice for A is the inverse of a square root of a covariance matrix estimate of the score vector, yielding a multivariate studentized score vector. This is not the only possible choice for A, though. Since then the transformed score vector is asymptotically pivotal, the bootstrap distribution is a second-order approximation to the exact finite sample distribution. As such, the bootstrap covariance matrix of the transformed score vector is also second-order correct. The next step is to construct a quadratic form statistic in the transformed score vector using its bootstrap covariance matrix as weighting matrix. This statistic is asymptotically (as both the sample size and the number of bootstrap simulations go to infinity) chi-squared distributed with q (the dimension of the score) degrees of freedom. In practice, however, the number of bootstrap simulations is fixed to, say, B simulations. In this case the statistic is asymptotically (for the sample size tending to infinity) Hotelling T-squared distributed with q and B-1 degrees of freedom. Using a finite B, the exact finite sample covariance matrix of the transformed score vector is estimated with some noise, but the T-squared critical values correct for this. When the T-squared critical values are used, one is still only first-order correct. But the distribution of the new statistic can also be approximated by the empirical distribution function of the quadratic forms in the bootstrap replications of the transformed score vector using the inverse of the bootstrap covariance matrix as weighting matrix. The appropriate quantile of this empirical distribution delivers a critical value which is second-order correct. In a Monte Carlo simulation study we look at the information matrix test (White, 1982) in the regression model. Chesher (1983) showed that the information matrix is a score test for parameter constancy. We correct the Chesher-Lancaster version (Chesher, 1983 and Lancaster, 1984) of the information matrix test with the method proposed above and look at the ERP under the null and the power under a heteroskedastic alternative. The corrected statistic outperforms the Chesher-Lancaster statistic both in terms of ERP (with asymptotic or bootstrap critical values) and power.

Suggested Citation

  • Dirk Hoorelbeke, 2004. "Bootstrap correcting the score test," Econometric Society 2004 North American Summer Meetings 228, Econometric Society.
  • Handle: RePEc:ecm:nasm04:228
    as

    Download full text from publisher

    File URL: http://repec.org/esNASM04/up.10721.1075302399.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhaene, Geert & Hoorelbeke, Dirk, 2004. "The information matrix test with bootstrap-based covariance matrix estimation," Economics Letters, Elsevier, vol. 82(3), pages 341-347, March.
    2. Horowitz, Joel L., 1994. "Bootstrap-based critical values for the information matrix test," Journal of Econometrics, Elsevier, vol. 61(2), pages 395-411, April.
    3. Teresa Aparicio & Inmaculada Villanua, 2001. "The asymptotically efficient version of the information matrix test in binary choice models. A study of size and power," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(2), pages 167-182.
    4. Chesher, Andrew, 1983. "The information matrix test : Simplified calculation via a score test interpretation," Economics Letters, Elsevier, vol. 13(1), pages 45-48.
    5. Davidson, Russell & MacKinnon, James G., 1984. "Convenient specification tests for logit and probit models," Journal of Econometrics, Elsevier, vol. 25(3), pages 241-262, July.
    6. Davidson, Russell & MacKinnon, James G, 1992. "A New Form of the Information Matrix Test," Econometrica, Econometric Society, vol. 60(1), pages 145-157, January.
    7. Chesher, Andrew D, 1984. "Testing for Neglected Heterogeneity," Econometrica, Econometric Society, vol. 52(4), pages 865-872, July.
    8. Davidson, Russell & MacKinnon, James G., 1996. "The Power of Bootstrap Tests," Queen's Institute for Economic Research Discussion Papers 273372, Queen's University - Department of Economics.
    9. Orme, Chris, 1990. "The small-sample performance of the information-matrix test," Journal of Econometrics, Elsevier, vol. 46(3), pages 309-331, December.
    10. Lancaster, Tony, 1984. "The Covariance Matrix of the Information Matrix Test," Econometrica, Econometric Society, vol. 52(4), pages 1051-1053, July.
    11. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    12. Horowitz, Joel L. & Savin, N. E., 2000. "Empirically relevant critical values for hypothesis tests: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 95(2), pages 375-389, April.
    13. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    14. Davidson, Russel & MacKinnon, James G., 1983. "Small sample properties of alternative forms of the Lagrange Multiplier test," Economics Letters, Elsevier, vol. 12(3-4), pages 269-275.
    15. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    16. Bera, Anil K. & Jarque, Carlos M., 1981. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals : Monte Carlo Evidence," Economics Letters, Elsevier, vol. 7(4), pages 313-318.
    17. Alastair Hall, 1987. "The Information Matrix Test for the Linear Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 54(2), pages 257-263.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. King, Maxwell L. & Zhang, Xibin & Akram, Muhammad, 2020. "Hypothesis testing based on a vector of statistics," Journal of Econometrics, Elsevier, vol. 219(2), pages 425-455.
    2. MacKinnon, James G, 1992. "Model Specification Tests and Artificial Regressions," Journal of Economic Literature, American Economic Association, vol. 30(1), pages 102-146, March.
    3. Riccardo Lucchetti & Claudia Pigini, 2013. "A test for bivariate normality with applications in microeconometric models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 535-572, November.
    4. Dhaene, Geert & Hoorelbeke, Dirk, 2004. "The information matrix test with bootstrap-based covariance matrix estimation," Economics Letters, Elsevier, vol. 82(3), pages 341-347, March.
    5. repec:ebl:ecbull:v:3:y:2008:i:5:p:1-7 is not listed on IDEAS
    6. Davidson, Russell & MacKinnon, James G., 1989. "Testing for Consistency using Artificial Regressions," Econometric Theory, Cambridge University Press, vol. 5(3), pages 363-384, December.
    7. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    8. Daisuke Nagakura, 2008. "A note on the relationship between the information matrx test and a score test for parameter constancy," Economics Bulletin, AccessEcon, vol. 3(5), pages 1-7.
    9. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2024. "The information matrix test for Gaussian mixtures," Working Papers wp2024_2401, CEMFI.
    10. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2016. "Generalized Information Matrix Tests for Detecting Model Misspecification," Econometrics, MDPI, vol. 4(4), pages 1-24, November.
    11. Chesher, Andrew & Dumangane, Montezuma & Smith, Richard J., 2002. "Duration response measurement error," Journal of Econometrics, Elsevier, vol. 111(2), pages 169-194, December.
    12. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    13. Davidson, Russell & MacKinnon, James G, 1988. "Double Length Artificial Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(2), pages 203-217, May.
    14. Stomberg, Christopher & White, Halbert, 2000. "Bootstrapping the Information Matrix Test," University of California at San Diego, Economics Working Paper Series qt158451cr, Department of Economics, UC San Diego.
    15. Francisco Cribari-Neto, 1996. "On the Corrections to Information Matrix Tests," Econometrics 9601001, University Library of Munich, Germany.
    16. Joachim Zietz, 2006. "Detecting neglected parameter heterogeneity with Chow tests," Applied Economics Letters, Taylor & Francis Journals, vol. 13(6), pages 369-374.
    17. Teresa Aparicio & Inmaculada Villanua, 2001. "The asymptotically efficient version of the information matrix test in binary choice models. A study of size and power," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(2), pages 167-182.
    18. Maxwell L. King & Xibin Zhang & Muhammad Akram, 2011. "A New Procedure For Multiple Testing Of Econometric Models," Monash Econometrics and Business Statistics Working Papers 7/11, Monash University, Department of Econometrics and Business Statistics.
    19. Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
    20. James G. MacKinnon & Russell Davidson, 1999. "Artificial Regressions," Working Paper 978, Economics Department, Queen's University.
    21. K. Chua & S. Ong, 2013. "Test of misspecification with application to negative binomial distribution," Computational Statistics, Springer, vol. 28(3), pages 993-1009, June.

    More about this item

    Keywords

    bootstrap; score test;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.