IDEAS home Printed from https://ideas.repec.org/p/ecm/feam04/606.html
   My bibliography  Save this paper

The Cusum Test for Parameter Change in Regression with ARCH Errors

Author

Listed:
  • Koichi Maekawa
  • Sangyeol
  • Lee

Abstract

In this paper, we concentrate ourselves on Inclán and Tiao (1994)'s cusum test in regression models with ARCH errors. The ARCH and GARCH models have long been popular in financial time series analysis. For a general review, see Gouriéroux (1997).Inclán and Tiao (1994)'s cusum test was originally designed for testing for variance changes and allocating their locations in iid samples. Later, it was demonstrated that the same idea can be extended to a large class of time series models (cf. Lee et all, 2003(a)). Also, the variance change test has been studied in unstable AR models (cf. Lee et al. (2003(b)). In fact, Kim, Cho and Lee (2000) considered to apply the cusum test to GARCH(1,1) models taking account of the fact that the variance is a functional of GARCH parameters, and their change can be detected by examining the existence of the variance change. Although this reasoning was correct, it turned out that the cusum test suffers from severe size distortions and low powers. Hence, there was a demand to improve their cusum test. Here, in order to circumvent such drawbacks, we propose to use the cusum test based on the residuals, given as the squares of observations divided by estimated conditional variances. We intend to use residuals since the residual based test conventionally discard correlation effects and enhance the performance of the test. In fact, a significant improvement was observed in our simulation study. Despite the previous work of Lee et al. (2003(b)) also considers a residual cusum test in time series models, the model of main concern was the autoregressive model with several unit roots. In fact, the mathematical analysis of the cusum test heavily relies on the probabilistic structure of the underlying time series model, and the arguments used for establishing the weak convergence result in unstable models are somewhat different from those in ARCH models. Therefore it is worth to investigate the asymptotic behavior of the residual cusum test in ARCH models. Although the present paper was originally motivated to improve Kim, Cho and Lee (2000)'s test in the GARCH(1,1) model, we consider the cusum test in a more general class of models including regression models with infinite order ARCH errors.

Suggested Citation

  • Koichi Maekawa & Sangyeol & Lee, 2004. "The Cusum Test for Parameter Change in Regression with ARCH Errors," Econometric Society 2004 Far Eastern Meetings 606, Econometric Society.
  • Handle: RePEc:ecm:feam04:606
    as

    Download full text from publisher

    File URL: http://repec.org/esFEAM04/up.19834.1080538803.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangyeol Lee & Siyun Park, 2001. "The Cusum of Squares Test for Scale Changes in Infinite Order Moving Average Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(4), pages 625-644, December.
    2. Andrew Harvey (ed.), 1994. "Time Series," Books, Edward Elgar Publishing, volume 0, number 599.
    3. Sangyeol Lee & Jeongcheol Ha & Okyoung Na & Seongryong Na, 2003. "The Cusum Test for Parameter Change in Time Series Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 781-796, December.
    4. Thomas Mikosch & Catalin Starica, 2004. "Long range dependence effects and ARCH modelling," Econometrics 0412004, University Library of Munich, Germany.
    5. Sangyeol Lee & Okyoung Na & Seongryong Na, 2003. "On the cusum of squares test for variance change in nonstationary and nonparametric time series models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 467-485, September.
    6. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Kyungwon, 2013. "Modeling financial crisis period: A volatility perspective of Credit Default Swap market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4977-4988.
    2. Chen, Zhanshou & Tian, Zheng, 2010. "Modified procedures for change point monitoring in linear models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 62-75.
    3. Lee, Sangyeol, 2006. "The Bickel-Rosenblatt test for diffusion processes," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1494-1502, August.
    4. Deng, Ai & Perron, Pierre, 2008. "The Limit Distribution Of The Cusum Of Squares Test Under General Mixing Conditions," Econometric Theory, Cambridge University Press, vol. 24(3), pages 809-822, June.
    5. Borzykh, Dmitriy & Yazykov, Artem, 2019. "The new KS method for a structural break detection in GARCH(1,1) models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 54, pages 90-104.
    6. Taewook Lee & Moosup Kim & Changryong Baek, 2015. "Tests for Volatility Shifts in Garch Against Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 127-153, March.
    7. repec:cte:wsrepe:ws131718 is not listed on IDEAS
    8. Borzykh, Dmitriy & Khasykov, Mikhail, 2018. "The refinement procedure of ICSS algorithm for structural breaks detection in GARCH-models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 51, pages 126-139.
    9. Habibi Reza, 2011. "A note on approximating distribution functions of cusum and cusumsq tests," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 1-10, January.
    10. Gordon J. Ross, 2012. "Modeling Financial Volatility in the Presence of Abrupt Changes," Papers 1212.6016, arXiv.org.
    11. Hsu, Shu-Han & Cheng, Po-Keng & Yang, Yiwen, 2024. "Diversification, hedging, and safe-haven characteristics of cryptocurrencies: A structural change approach," International Review of Financial Analysis, Elsevier, vol. 93(C).
    12. Ai Deng & Pierre Perron, 2005. "The Limit Distribution of the CUSUM of Square Test Under Genreal MIxing Conditions," Boston University - Department of Economics - Working Papers Series WP2005-046, Boston University - Department of Economics.
    13. Sang Hoon Kang & Seong-Min Yoon, 2010. "Sudden Changes and Persistence in Volatility of Korean Equity Sector Returns," Korean Economic Review, Korean Economic Association, vol. 26, pages 431-451.
    14. Lee, Sangyeol & Park, Siyun, 2009. "The monitoring test for the stability of regression models with nonstationary regressors," Economics Letters, Elsevier, vol. 105(3), pages 250-252, December.
    15. Ross, Gordon J., 2013. "Modelling financial volatility in the presence of abrupt changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 350-360.
    16. Lu, Xinhong & Maekawa, Koichi & Lee, Sangyeol, 2008. "The CUSUM of squares test for the stability of regression models with non-stationary regressors," Economics Letters, Elsevier, vol. 100(2), pages 234-237, August.
    17. Haejune Oh & Sangyeol Lee, 2018. "On score vector- and residual-based CUSUM tests in ARMA–GARCH models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 385-406, August.
    18. Jiwon Kang & Sangyeol Lee, 2014. "Parameter Change Test for Poisson Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1136-1152, December.
    19. Haejune Oh & Sangyeol Lee, 2019. "Modified residual CUSUM test for location-scale time series models with heteroscedasticity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1059-1091, October.
    20. Manh Cuong Dong & Cathy W. S. Chen & Sangyoel Lee & Songsak Sriboonchitta, 2019. "How Strong is the Relationship Among Gold and USD Exchange Rates? Analytics Based on Structural Change Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 343-366, January.
    21. Okyoung Na & Jiyeon Lee & Sangyeol Lee, 2013. "Change point detection in SCOMDY models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(3), pages 215-238, July.
    22. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cte:wsrepe:ws131718 is not listed on IDEAS
    2. Minyoung Jo & Sangyeol Lee, 2021. "On CUSUM test for dynamic panel models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 515-542, June.
    3. Maria Mohr & Natalie Neumeyer, 2021. "Nonparametric volatility change detection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 529-548, June.
    4. Wied, Dominik & Dehling, Herold & van Kampen, Maarten & Vogel, Daniel, 2014. "A fluctuation test for constant Spearman’s rho with nuisance-free limit distribution," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 723-736.
    5. Haejune Oh & Sangyeol Lee, 2018. "On score vector- and residual-based CUSUM tests in ARMA–GARCH models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 385-406, August.
    6. Deng, Ai & Perron, Pierre, 2008. "The Limit Distribution Of The Cusum Of Squares Test Under General Mixing Conditions," Econometric Theory, Cambridge University Press, vol. 24(3), pages 809-822, June.
    7. Vanessa Berenguer-Rico & Bent Nielsen, 2015. "Cumulated sum of squares statistics for non-linear and non-stationary regressions," Economics Papers 2015-W09, Economics Group, Nuffield College, University of Oxford.
    8. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    9. Chen, Zhanshou & Tian, Zheng, 2010. "Modified procedures for change point monitoring in linear models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 62-75.
    10. Lee, Sangyeol, 2013. "A maximum entropy type test of fit: Composite hypothesis case," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 59-67.
    11. Josephine Njeri Ngure & Anthony Gichuhi Waititu, 2021. "Consistency of an Estimator for Change Point in Volatility of Financial Returns," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 13(1), pages 1-56, February.
    12. Marco Barassi & Lajos Horváth & Yuqian Zhao, 2020. "Change‐Point Detection in the Conditional Correlation Structure of Multivariate Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 340-349, April.
    13. Xu, Ke-Li, 2013. "Powerful tests for structural changes in volatility," Journal of Econometrics, Elsevier, vol. 173(1), pages 126-142.
    14. Lee, Sangyeol & Na, Okyoung, 2005. "Test for parameter change in stochastic processes based on conditional least-squares estimator," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 375-393, April.
    15. Ai Deng & Pierre Perron, 2005. "The Limit Distribution of the CUSUM of Square Test Under Genreal MIxing Conditions," Boston University - Department of Economics - Working Papers Series WP2005-046, Boston University - Department of Economics.
    16. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    17. Elena Andreou, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 290-318.
    18. Baisuo Jin & Mong-Na Lo Huang & Baiqi Miao, 2011. "Testing for variance changes in autoregressive models with unknown order," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 927-936, January.
    19. Na, Okyoung & Lee, Sangyeol, 2007. "Moving estimates test with time varying bandwidth," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1356-1375, August.
    20. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.

    More about this item

    Keywords

    Test for parameter change; regression models with ARCH errors; residual cusum test; Brownian bridge; weak convergence;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:feam04:606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.