IDEAS home Printed from https://ideas.repec.org/p/ecl/riceco/2003-17.html
   My bibliography  Save this paper

Weak Unit Roots

Author

Listed:
  • Park, Joon

    (Rice U)

Abstract

This paper develops the large sample theory for econometric models with time series having roots in proximity of unity. In particular, a special attention is given to the time series with roots outside the n-1-neighborhood of unity, called the weak unit roots. They are the processes with roots approaching to unity as sample size increases, but not too fastly. It is shown that the weak unit root processes yield the standard law of large numbers and central limit theorem-like results, and as a consequence, the usual large sample theory of inference based on normal asymptotics is applicable for models with weak unit root processes. This suggests that we may rely on the conventional statistical theory also for models with roots close to unity, as long as the roots are not too close to unity. In practice, it seems that we may safely use the standard normal theory, unless the roots are very close to one in a metric proportional to the magnitude of sample size. We consider a wide class of models including autoregressions and nonlinear, as well as linear, cointegrated models with weak unit roots.

Suggested Citation

  • Park, Joon, 2003. "Weak Unit Roots," Working Papers 2003-17, Rice University, Department of Economics.
  • Handle: RePEc:ecl:riceco:2003-17
    as

    Download full text from publisher

    File URL: http://www.ruf.rice.edu/~econ/papers/2003papers/17park.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    2. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(3), pages 269-298, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrews, Donald W.K. & Guggenberger, Patrik, 2012. "Asymptotics for LS, GLS, and feasible GLS statistics in an AR(1) model with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 169(2), pages 196-210.
    2. Donald W. K. Andrews & Patrik Guggenberger, 2008. "Asymptotics for stationary very nearly unit root processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 203-212, January.
    3. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.
    4. Han, Heejoon & Park, Joon Y., 2008. "Time series properties of ARCH processes with persistent covariates," Journal of Econometrics, Elsevier, vol. 146(2), pages 275-292, October.
    5. Donald W.K. Andrews & Patrik Guggenberger, 2007. "Hybrid and Size-Corrected Subsample Methods," Cowles Foundation Discussion Papers 1606, Cowles Foundation for Research in Economics, Yale University.
    6. Park, Joon Y., 2006. "A bootstrap theory for weakly integrated processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 639-672, August.
    7. Jeong, Minsoo, 2022. "Modelling persistent stationary processes in continuous time," Economic Modelling, Elsevier, vol. 109(C).
    8. Yixiao Sun, 2014. "Fixed-smoothing Asymptotics and AsymptoticFandtTests in the Presence of Strong Autocorrelation," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 23-63, Emerald Group Publishing Limited.
    9. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    10. Stephan Smeekes & Joakim Westerlund, 2019. "Robust block bootstrap panel predictability tests," Econometric Reviews, Taylor & Francis Journals, vol. 38(9), pages 1089-1107, October.
    11. Han, Heejoon & Park, Joon Y., 2012. "ARCH/GARCH with persistent covariate: Asymptotic theory of MLE," Journal of Econometrics, Elsevier, vol. 167(1), pages 95-112.
    12. Wang, Xiaohu & Yu, Jun, 2016. "Double asymptotics for explosive continuous time models," Journal of Econometrics, Elsevier, vol. 193(1), pages 35-53.
    13. Marie Badreau & Frédéric Proïa, 2023. "Consistency and asymptotic normality in a class of nearly unstable processes," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 619-641, October.
    14. Shibamoto, Masahiko, 2008. "The estimation of monetary policy reaction function in a data-rich environment: The case of Japan," Japan and the World Economy, Elsevier, vol. 20(4), pages 497-520, December.
    15. Yiu Lim Lui & Weilin Xiao & Jun Yu, 2021. "Mildly Explosive Autoregression with Anti‐persistent Errors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(2), pages 518-539, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    2. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    3. repec:zbw:bofitp:2011_027 is not listed on IDEAS
    4. Arai, Yoichi, 2016. "Testing For Linearity In Regressions With I(1) Processes," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 57(1), pages 111-138, June.
    5. Phillips, Peter C. B. & Park, Joon Y. & Chang, Yoosoon, 2004. "Nonlinear instrumental variable estimation of an autoregression," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 219-246.
    6. Miller, J. Isaac & Park, Joon Y., 2005. "How They Interact to Generate Persistency in Memory," Working Papers 2005-01, Rice University, Department of Economics.
    7. Lee, Jungick & de Jong, Robert M., 2008. "Exponential functionals of integrated processes," Economics Letters, Elsevier, vol. 100(2), pages 181-184, August.
    8. Kim, Chang Sik & Kim, In-Moo, 2008. "Nonlinear regression for unit root models with autoregressive errors," Economics Letters, Elsevier, vol. 100(3), pages 326-329, September.
    9. Federico Bandi & Peter C. B. Phillips, 2000. "Accelerated Asymptotics for Diffusion Model Estimation," Econometric Society World Congress 2000 Contributed Papers 1656, Econometric Society.
    10. Li, Dao & He, Changli, 2012. "Testing for Linear Cointegration Against Smooth-Transition Cointegration," Working Papers 2012:6, Örebro University, School of Business.
    11. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(3), pages 710-738, June.
    12. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    13. Zhishui Hu & Ioannis Kasparis & Qiying Wang, 2020. "Locally trimmed least squares: conventional inference in possibly nonstationary models," Papers 2006.12595, arXiv.org.
    14. Davidson, James & Terasvirta, Timo, 2002. "Long memory and nonlinear time series," Journal of Econometrics, Elsevier, vol. 110(2), pages 105-112, October.
    15. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Papers 2111.02023, arXiv.org.
    16. Burak Alparslan Eroğlu & J. Isaac Miller & Taner Yiğit, 2022. "Time-varying cointegration and the Kalman filter," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 1-21, January.
    17. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    18. Anne-Laure Delatte & Julien Fouquau & Carsten Holz, 2014. "Explaining money demand in China during the transition from a centrally planned to a market-based monetary system," Post-Communist Economies, Taylor & Francis Journals, vol. 26(3), pages 376-400, September.
    19. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2021. "Bayesian estimation for a semiparametric nonlinear volatility model," Economic Modelling, Elsevier, vol. 98(C), pages 361-370.
    20. Youngsoo Bae & Robert M. de Jong, 2007. "Money demand function estimation by nonlinear cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 767-793.
    21. Phillips, Peter C.B. & Jin, Sainan & Hu, Ling, 2007. "Nonstationary discrete choice: A corrigendum and addendum," Journal of Econometrics, Elsevier, vol. 141(2), pages 1115-1130, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:riceco:2003-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/dericus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.