IDEAS home Printed from https://ideas.repec.org/p/ecl/harjfk/rwp18-008.html
   My bibliography  Save this paper

Data-Driven Percentile Optimization for Multi-Class Queueing Systems with Model Ambiguity: Theory and Application

Author

Listed:
  • Bren, Austin

    (Arizona State University)

  • Saghafian, Soroush

    (Harvard University)

Abstract

Multi-class queueing systems widely used in operations research and management typically experience ambiguity in real world settings in the form of unknown parameters. For such systems, we incorporate robustness in the control policies by applying a data-driven percentile optimization technique that allows for (1) expressing a controller’s optimism level toward ambiguity, and (2) utilizing incoming data in order to learn the true system parameters. We show that the optimal policy under the percentile optimization objective is related to a closed-form priority-based policy. We also identify connections between the optimal percentile optimization and cµ-like policies, which in turn enables us to establish effective but easy-to-use heuristics for implementation in complex systems. Using real-world data collected from a leading U.S. hospital, we also apply our approach to a hospital Emergency Department (ED) setting, and demonstrate the benefits of using our framework for improving current patient flow policies.

Suggested Citation

  • Bren, Austin & Saghafian, Soroush, 2018. "Data-Driven Percentile Optimization for Multi-Class Queueing Systems with Model Ambiguity: Theory and Application," Working Paper Series rwp18-008, Harvard University, John F. Kennedy School of Government.
  • Handle: RePEc:ecl:harjfk:rwp18-008
    as

    Download full text from publisher

    File URL: https://research.hks.harvard.edu/publications/getFile.aspx?Id=1634
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Chaithanya Bandi & Dimitris Bertsimas & Nataly Youssef, 2015. "Robust Queueing Theory," Operations Research, INFORMS, vol. 63(3), pages 676-700, June.
    3. Erick Delage & Shie Mannor, 2010. "Percentile Optimization for Markov Decision Processes with Parameter Uncertainty," Operations Research, INFORMS, vol. 58(1), pages 203-213, February.
    4. Yiwei Chen & Vivek F. Farias, 2013. "Simple Policies for Dynamic Pricing with Imperfect Forecasts," Operations Research, INFORMS, vol. 61(3), pages 612-624, June.
    5. Soroush Saghafian & Wallace J. Hopp & Mark P. Van Oyen & Jeffrey S. Desmond & Steven L. Kronick, 2014. "Complexity-Augmented Triage: A Tool for Improving Patient Safety and Operational Efficiency," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 329-345, July.
    6. Hao Zhang, 2010. "Partially Observable Markov Decision Processes: A Geometric Technique and Analysis," Operations Research, INFORMS, vol. 58(1), pages 214-228, February.
    7. Dimitris Bertsimas & David Gamarnik & Alexander Anatoliy Rikun, 2011. "Performance Analysis of Queueing Networks via Robust Optimization," Operations Research, INFORMS, vol. 59(2), pages 455-466, April.
    8. Christos H. Papadimitriou & John N. Tsitsiklis, 1987. "The Complexity of Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 441-450, August.
    9. Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
    10. Soroush Saghafian & Wallace J. Hopp & Mark P. Van Oyen & Jeffrey S. Desmond & Steven L. Kronick, 2012. "Patient Streaming as a Mechanism for Improving Responsiveness in Emergency Departments," Operations Research, INFORMS, vol. 60(5), pages 1080-1097, October.
    11. Arnab Nilim & Laurent El Ghaoui, 2005. "Robust Control of Markov Decision Processes with Uncertain Transition Matrices," Operations Research, INFORMS, vol. 53(5), pages 780-798, October.
    12. Hansen, Lars Peter & Sargent, Thomas J., 2007. "Recursive robust estimation and control without commitment," Journal of Economic Theory, Elsevier, vol. 136(1), pages 1-27, September.
    13. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    14. Shie Mannor & Duncan Simester & Peng Sun & John N. Tsitsiklis, 2007. "Bias and Variance Approximation in Value Function Estimates," Management Science, INFORMS, vol. 53(2), pages 308-322, February.
    15. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2013. "Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 153-183, February.
    16. Nilay Tan{i}k Argon & Serhan Ziya, 2009. "Priority Assignment Under Imperfect Information on Customer Type Identities," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 674-693, June.
    17. Andrew E. B. Lim & J. George Shanthikumar & Gah-Yi Vahn, 2012. "Robust Portfolio Choice with Learning in the Framework of Regret: Single-Period Case," Management Science, INFORMS, vol. 58(9), pages 1732-1746, September.
    18. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shie Mannor & Ofir Mebel & Huan Xu, 2016. "Robust MDPs with k -Rectangular Uncertainty," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1484-1509, November.
    2. Saghafian, Soroush, 2018. "Ambiguous partially observable Markov decision processes: Structural results and applications," Journal of Economic Theory, Elsevier, vol. 178(C), pages 1-35.
    3. Michael Jong Kim, 2016. "Robust Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 64(4), pages 999-1014, August.
    4. V Varagapriya & Vikas Vikram Singh & Abdel Lisser, 2023. "Joint chance-constrained Markov decision processes," Annals of Operations Research, Springer, vol. 322(2), pages 1013-1035, March.
    5. Michael Jong Kim & Andrew E.B. Lim, 2016. "Robust Multiarmed Bandit Problems," Management Science, INFORMS, vol. 62(1), pages 264-285, January.
    6. Shuangchi He & Melvyn Sim & Meilin Zhang, 2019. "Data-Driven Patient Scheduling in Emergency Departments: A Hybrid Robust-Stochastic Approach," Management Science, INFORMS, vol. 65(9), pages 4123-4140, September.
    7. Varagapriya, V & Singh, Vikas Vikram & Lisser, Abdel, 2024. "Rank-1 transition uncertainties in constrained Markov decision processes," European Journal of Operational Research, Elsevier, vol. 318(1), pages 167-178.
    8. Zahra Ghatrani & Archis Ghate, 2024. "Percentile optimization in multi-armed bandit problems," Annals of Operations Research, Springer, vol. 340(2), pages 837-862, September.
    9. Maximilian Blesch & Philipp Eisenhauer, 2023. "Robust Decision-Making under Risk and Ambiguity," Rationality and Competition Discussion Paper Series 463, CRC TRR 190 Rationality and Competition.
    10. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.
    11. Alireza Boloori & Soroush Saghafian & Harini A. Chakkera & Curtiss B. Cook, 2020. "Data-Driven Management of Post-transplant Medications: An Ambiguous Partially Observable Markov Decision Process Approach," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 1066-1087, September.
    12. Maximilian Blesch & Philipp Eisenhauer, 2021. "Robust Decision-Making Under Risk and Ambiguity," ECONtribute Discussion Papers Series 104, University of Bonn and University of Cologne, Germany.
    13. Zeynep Turgay & Fikri Karaesmen & Egemen Lerzan Örmeci, 2018. "Structural properties of a class of robust inventory and queueing control problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(8), pages 699-716, December.
    14. David L. Kaufman & Andrew J. Schaefer, 2013. "Robust Modified Policy Iteration," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 396-410, August.
    15. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    16. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    17. Huan Xu & Shie Mannor, 2012. "Distributionally Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 288-300, May.
    18. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    19. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2013. "Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 153-183, February.
    20. Zhu, Zhicheng & Xiang, Yisha & Zhao, Ming & Shi, Yue, 2023. "Data-driven remanufacturing planning with parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 102-116.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:harjfk:rwp18-008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ksharus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.