IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i5p1080-1097.html
   My bibliography  Save this article

Patient Streaming as a Mechanism for Improving Responsiveness in Emergency Departments

Author

Listed:
  • Soroush Saghafian

    (Industrial Engineering, School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona 85281)

  • Wallace J. Hopp

    (Ross School of Business, University of Michigan, Ann Arbor, Michigan 48109)

  • Mark P. Van Oyen

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109)

  • Jeffrey S. Desmond

    (Emergency Department, University of Michigan Hospital, Ann Arbor, Michigan 48109)

  • Steven L. Kronick

    (Emergency Department, University of Michigan Hospital, Ann Arbor, Michigan 48109)

Abstract

Crisis-level overcrowding conditions in emergency departments (EDs) have led hospitals to seek out new patient-flow designs to improve both responsiveness and safety. One approach that has attracted attention and experimentation in the emergency medicine community is a system in which ED beds and care teams are segregated and patients are “streamed” based on predictions of whether they will be discharged or admitted to the hospital. In this paper, we use a combination of analytic and simulation models to determine whether such a streaming policy can improve ED performance, where it is most likely to be effective, and how it should be implemented for maximum performance. Our results suggest that the concept of streaming can indeed improve patient flow, but only in some situations. First, ED resources must be shared across streams rather than physically separated. This leads us to propose a new “virtual-streaming” patient flow design for EDs. Second, this type of streaming is most effective in EDs with (1) a high percentage of admitted patients, (2) longer care times for admitted patients than discharged patients, (3) a high day-to-day variation in the percentage of admitted patients, (4) long patient boarding times (e.g., caused by hospital “bed-block”), and (5) high average physician utilization. Finally, to take full advantage of streaming, physicians assigned to admit patients should prioritize upstream (new) patients, whereas physicians assigned to discharge patients should prioritize downstream (old) patients.

Suggested Citation

  • Soroush Saghafian & Wallace J. Hopp & Mark P. Van Oyen & Jeffrey S. Desmond & Steven L. Kronick, 2012. "Patient Streaming as a Mechanism for Improving Responsiveness in Emergency Departments," Operations Research, INFORMS, vol. 60(5), pages 1080-1097, October.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:5:p:1080-1097
    DOI: 10.1287/opre.1120.1096
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1096
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wallace J. Hopp & Seyed M. R. Iravani & Biying Shou, 2005. "Serial Agile Production Systems with Automation," Operations Research, INFORMS, vol. 53(5), pages 852-866, October.
    2. Bin Hu & Saif Benjaafar, 2009. "Partitioning of Servers in Queueing Systems During Rush Hour," Manufacturing & Service Operations Management, INFORMS, vol. 11(3), pages 416-428, October.
    3. Michael H. Rothkopf & Paul Rech, 1987. "Perspectives on Queues: Combining Queues is Not Always Beneficial," Operations Research, INFORMS, vol. 35(6), pages 906-909, December.
    4. Izak Duenyas & Diwakar Gupta & Tava Lennon Olsen, 1998. "Control of a Single-Server Tandem Queueing System with Setups," Operations Research, INFORMS, vol. 46(2), pages 218-230, April.
    5. Ward Whitt, 1999. "Partitioning Customers into Service Groups," Management Science, INFORMS, vol. 45(11), pages 1579-1592, November.
    6. Sigrún Andradóttir & Hayriye Ayhan & Douglas G. Down, 2003. "Dynamic Server Allocation for Queueing Networks with Flexible Servers," Operations Research, INFORMS, vol. 51(6), pages 952-968, December.
    7. Eylem Tekin & Wallace Hopp & Mark Van Oyen, 2009. "Pooling strategies for call center agent cross-training," IISE Transactions, Taylor & Francis Journals, vol. 41(6), pages 546-561.
    8. Nilay Tan{i}k Argon & Serhan Ziya, 2009. "Priority Assignment Under Imperfect Information on Customer Type Identities," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 674-693, June.
    9. Soroush Saghafian & Mark Van Oyen & Bora Kolfal, 2011. "The “W” network and the dynamic control of unreliable flexible servers," IISE Transactions, Taylor & Francis Journals, vol. 43(12), pages 893-907.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Dobson & Tolga Tezcan & Vera Tilson, 2013. "Optimal Workflow Decisions for Investigators in Systems with Interruptions," Management Science, INFORMS, vol. 59(5), pages 1125-1141, May.
    2. Tanja Mlinar & Philippe Chevalier, 2016. "Pooling heterogeneous products for manufacturing environments," 4OR, Springer, vol. 14(2), pages 173-200, June.
    3. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2010. "Robustness of efficient server assignment policies to service time distributions in finite‐buffered lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 563-582, September.
    4. Yi‐Chun Tsai & Nilay Tanık Argon, 2008. "Dynamic server assignment policies for assembly‐type queues with flexible servers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 234-251, April.
    5. Nilay Tanık Argon & Sigrún Andradóttir, 2017. "Pooling in tandem queueing networks with non-collaborative servers," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 345-377, December.
    6. Peng Wang & Kai Pan & Zhenzhen Yan & Yun Fong Lim, 2022. "Managing Stochastic Bucket Brigades on Discrete Work Stations," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 358-373, January.
    7. Eser Kırkızlar & Sigrún Andradóttir & Hayriye Ayhan, 2012. "Flexible Servers in Understaffed Tandem Lines," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 761-777, July.
    8. Oualid Jouini & Yves Dallery & Rabie Nait-Abdallah, 2008. "Analysis of the Impact of Team-Based Organizations in Call Center Management," Management Science, INFORMS, vol. 54(2), pages 400-414, February.
    9. Jeff Hong, L. & Xu, Xiaowei & Zhang, Sheng Hao, 2015. "Capacity reservation for time-sensitive service providers: An application in seaport management," European Journal of Operational Research, Elsevier, vol. 245(2), pages 470-479.
    10. S.M.R. Iravani & J.A. Buzacott & M.J.M. Posner, 2005. "A robust policy for serial agile production systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 58-73, February.
    11. Bin Hu & Saif Benjaafar, 2009. "Partitioning of Servers in Queueing Systems During Rush Hour," Manufacturing & Service Operations Management, INFORMS, vol. 11(3), pages 416-428, October.
    12. Jingqi Wang & Yong-Pin Zhou, 2018. "Impact of Queue Configuration on Service Time: Evidence from a Supermarket," Management Science, INFORMS, vol. 64(7), pages 3055-3075, July.
    13. Wallace J. Hopp & Seyed M.R. Iravani & Biying Shou & Robert Lien, 2009. "Design and control of agile automated CONWIP production lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(1), pages 42-56, February.
    14. Gabriel Zayas-Cabán & Jingui Xie & Linda V. Green & Mark E. Lewis, 2016. "Dynamic control of a tandem system with abandonments," Queueing Systems: Theory and Applications, Springer, vol. 84(3), pages 279-293, December.
    15. Maddah, Bacel & Nasr, Walid W. & Charanek, Ali, 2017. "A multi-station system for reducing congestion in high-variability queues," European Journal of Operational Research, Elsevier, vol. 262(2), pages 602-619.
    16. E. Morozov & B. Steyaert, 2013. "Stability analysis of a two-station cascade queueing network," Annals of Operations Research, Springer, vol. 202(1), pages 135-160, January.
    17. Yun Fong Lim & Bingnan Lu & Rowan Wang & Wenjia Zhang, 2020. "Flexibly Serving A Finite Number of Heterogeneous Jobs in A Tandem System," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1431-1447, June.
    18. Avishai Mandelbaum & Petar Momčilović, 2017. "Personalized queues: the customer view, via a fluid model of serving least-patient first," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 23-53, October.
    19. Emmett J. Lodree & Nezih Altay & Robert A. Cook, 2019. "Staff assignment policies for a mass casualty event queuing network," Annals of Operations Research, Springer, vol. 283(1), pages 411-442, December.
    20. Tony T. Tran & Meghana Padmanabhan & Peter Yun Zhang & Heyse Li & Douglas G. Down & J. Christopher Beck, 2018. "Multi-stage resource-aware scheduling for data centers with heterogeneous servers," Journal of Scheduling, Springer, vol. 21(2), pages 251-267, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:5:p:1080-1097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.