IDEAS home Printed from https://ideas.repec.org/p/dre/wpaper/2013-1.html
   My bibliography  Save this paper

A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm

Author

Listed:
  • Nikolaos Zirogiannis

    (Department of Resource Economics, University of Massachusetts Amherst)

  • Yorghos Tripodis

    (Department of Biostatistics, Boston University School of Public Health)

Abstract

We develop a generalized dynamic factor model for panel data with the goal of estimating an unobserved index. While similar models have been developed in the literature of dynamic factor analysis, our contribution is threefold. First, contrary to simple dynamic factor analysis where multiple attributes of the same subject are measured at each time period, our model also accounts for multiple subjects. It is therefore suitable to a panel data framework. Second, our model estimates a unique unobserved index for every subject for every time period, as opposed to previous work where a temporal index common to all subjects was used. Third, we develop a novel iterative estimation process which we call the Two-Cycle Conditional Expectation-Maximization (2CCEM) algorithm and is flexible enough to handle a variety of different types of datasets. The model is applied on a panel measuring attributes related to the operation of water and sanitation utilities.

Suggested Citation

  • Nikolaos Zirogiannis & Yorghos Tripodis, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Papers 2013-1, University of Massachusetts Amherst, Department of Resource Economics.
  • Handle: RePEc:dre:wpaper:2013-1
    as

    Download full text from publisher

    File URL: http://courses.umass.edu/resec/workingpapers/documents/ResEcWorkingPaper2013-1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luiz Koodi Hotta, 1989. "Identification Of Unobserved Components Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 259-270, May.
    2. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    3. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    4. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    6. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    7. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, September.
    8. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    9. Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
    10. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    11. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    12. Donald Rubin & Dorothy Thayer, 1982. "EM algorithms for ML factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(1), pages 69-76, March.
    13. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    14. Sudhir Anand and Amartya Sen, 1994. "Human development Index: Methodology and Measurement," Human Development Occasional Papers (1992-2007) HDOCPA-1994-02, Human Development Report Office (HDRO), United Nations Development Programme (UNDP).
    15. Caroline van den Berg & Alexander Danilenko, 2011. "The IBNET Water Supply and Sanitation Performance Blue Book," World Bank Publications - Books, The World Bank Group, number 2545.
    16. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    17. Grosskopf, S. & Valdmanis, V., 1987. "Measuring hospital performance : A non-parametric approach," Journal of Health Economics, Elsevier, vol. 6(2), pages 89-107, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    2. Nikolaos Zirogiannis & Yorghos Tripodis, 2018. "Dynamic factor analysis for short panels: estimating performance trajectories for water utilities," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 131-150, March.
    3. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2014. "Dynamic Factor Analysis for Short Panels: Estimating Performance Trajectories for Water Utilities," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170592, Agricultural and Applied Economics Association.
    4. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    6. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    7. Alain Galli, 2018. "Which Indicators Matter? Analyzing the Swiss Business Cycle Using a Large-Scale Mixed-Frequency Dynamic Factor Model," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(2), pages 179-218, November.
    8. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    9. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
    10. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    11. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    12. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    13. Serena Ng & Susannah Scanlan, 2023. "Constructing High Frequency Economic Indicators by Imputation," Papers 2303.01863, arXiv.org, revised Oct 2023.
    14. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    15. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    16. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    17. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    18. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    19. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    20. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.

    More about this item

    Keywords

    Dynamic Factor Models; EM algorithm; Panel Data; State-Space models; IBNET;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dre:wpaper:2013-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eileen Keegan (email available below). General contact details of provider: https://edirc.repec.org/data/degraus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.