IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v81y2019icp63-69.html
   My bibliography  Save this article

Thermodynamic constraints and the use of energy-dependent CES-production functions A cautionary comment

Author

Listed:
  • Meran, Georg

Abstract

Particularly in the context of energy and climate policy models, CES production functions are used as a basis for deriving sustainable development paths. Of crucial importance here is the reduction of the energy intensity of production processes with the help of substitution processes away from energy to other inputs. The modeling of these substitution processes must, of course, comply with the laws of physics. Therefore, the CES function is often used because it is supposed to satisfy thermodynamic laws. This is assumed to be met if the elasticity of substitution between energy inputs and other non-energy inputs is less than 1. The following commentary is meant to show that this specification is only a necessary pre-condition for fulfilling the thermodynamic laws. The permissible values of the other parameters of the CES- production function are subject to additional restrictions. Using an empirical example, the thermodynamic parameter restriction space for an aggregated production function of the English economy are presented. The consideration of thermodynamic limits can also be included directly into the design of production functions. An analysis of the linear-exponential production function derives various characteristics relevant to policy analysis. It is a priori not possible to decide which approach is preferable. Future empirical studies can help to clarify this question.

Suggested Citation

  • Meran, Georg, 2019. "Thermodynamic constraints and the use of energy-dependent CES-production functions A cautionary comment," Energy Economics, Elsevier, vol. 81(C), pages 63-69.
  • Handle: RePEc:eee:eneeco:v:81:y:2019:i:c:p:63-69
    DOI: 10.1016/j.eneco.2019.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098831930088X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serrenho, André Cabrera & Sousa, Tânia & Warr, Benjamin & Ayres, Robert U. & Domingos, Tiago, 2014. "Decomposition of useful work intensity: The EU (European Union)-15 countries from 1960 to 2009," Energy, Elsevier, vol. 76(C), pages 704-715.
    2. Jack Miller & Timothy J. Foxon & Steve Sorrell, 2016. "Exergy Accounting: A Quantitative Comparison of Methods and Implications for Energy-Economy Analysis," Energies, MDPI, vol. 9(11), pages 1-22, November.
    3. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    4. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    5. Islam, Saiful, 1985. "Effect of an essential input on isoquants and substitution elasticities," Energy Economics, Elsevier, vol. 7(3), pages 194-196, July.
    6. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
    7. Stefan baumgärtner, 2004. "The Inada Conditions for Material Resource Inputs Reconsidered," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 29(3), pages 307-322, November.
    8. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    9. Lars Peter Hansen & James J. Heckman, 1996. "The Empirical Foundations of Calibration," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 87-104, Winter.
    10. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    11. Bianciardi, C. & Donati, A. & Ulgiati, S., 1993. "On the relationship between the economic process, the Carnot cycle and the entropy law," Ecological Economics, Elsevier, vol. 8(1), pages 7-10, August.
    12. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
    13. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    14. Anderson, Curt L., 1987. "The production process: Inputs and wastes," Journal of Environmental Economics and Management, Elsevier, vol. 14(1), pages 1-12, March.
    15. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
    16. Cullen, Jonathan M. & Allwood, Julian M., 2010. "Theoretical efficiency limits for energy conversion devices," Energy, Elsevier, vol. 35(5), pages 2059-2069.
    17. Zha, Donglan & Zhou, Dequn, 2014. "The elasticity of substitution and the way of nesting CES production function with emphasis on energy input," Applied Energy, Elsevier, vol. 130(C), pages 793-798.
    18. Lesourd, Jean-Baptiste, 1985. "Energy and resources as production factors in process industries," Energy Economics, Elsevier, vol. 7(3), pages 138-144, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-François Fagnart & Marc Germain & Benjamin Peeters, 2020. "Can the Energy Transition Be Smooth? A General Equilibrium Approach to the EROEI," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    2. Jean‐François Fagnart & Marc Germain & Bruno Van der Linden, 2023. "Working time reduction and employment in a finite world," Scandinavian Journal of Economics, Wiley Blackwell, vol. 125(1), pages 170-207, January.
    3. Fabian Stöckl, 2020. "Is Substitutability the New Efficiency? Endogenous Investment in the Elasticity of Substitution between Clean and Dirty Energy," Discussion Papers of DIW Berlin 1886, DIW Berlin, German Institute for Economic Research.
    4. Fabian Stöckl & Alexander Zerrahn, 2023. "Substituting Clean for Dirty Energy: A Bottom-Up Analysis," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 819-863.
    5. Meran, Georg, 2023. "Is green growth possible and even desirable in a spaceship economy?," Ecological Economics, Elsevier, vol. 213(C).
    6. Marc Germain, 2022. "Limits to growth and creative destruction in the framework of a vintage capital model [Limites à la croissance et destruction créatrice dans le cadre d'un modèle à générations de capital]," Working Papers hal-03849759, HAL.
    7. Marc Germain, 2021. "Limites à la croissance et destruction créatrice dans le cadre d'un modèle à générations de capital," Working Papers 2021.14, FAERE - French Association of Environmental and Resource Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
    2. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
    3. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    4. Germain, Marc, 2019. "Georgescu-Roegen versus Solow/Stiglitz: Back to a controversy," Ecological Economics, Elsevier, vol. 160(C), pages 168-182.
    5. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    6. Paul E. Brockway & Harry Saunders & Matthew K. Heun & Timothy J. Foxon & Julia K. Steinberger & John R. Barrett & Steve Sorrell, 2017. "Energy Rebound as a Potential Threat to a Low-Carbon Future: Findings from a New Exergy-Based National-Level Rebound Approach," Energies, MDPI, vol. 10(1), pages 1-24, January.
    7. Zhu, Xuehong & Zeng, Anqi & Zhong, Meirui & Huang, Jianbai, 2021. "Elasticity of substitution and biased technical change in the CES production function for China's metal-intensive industries," Resources Policy, Elsevier, vol. 73(C).
    8. Henningsen, Arne & Henningsen, Geraldine & van der Werf, Edwin, 2019. "Capital-labour-energy substitution in a nested CES framework: A replication and update of Kemfert (1998)," Energy Economics, Elsevier, vol. 82(C), pages 16-25.
    9. Victor Court, 2019. "An Estimation of Different Minimum Exergy Return Ratios Required for Society," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-13, September.
    10. Marco Sakai & Paul E. Brockway & John R. Barrett & Peter G. Taylor, 2018. "Thermodynamic Efficiency Gains and their Role as a Key ‘Engine of Economic Growth’," Energies, MDPI, vol. 12(1), pages 1-14, December.
    11. Heun, Matthew Kuperus & Brockway, Paul E., 2019. "Meeting 2030 primary energy and economic growth goals: Mission impossible?," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    13. Malliet, Paul & Reynès, Frédéric G., 2022. "Empirical estimates of the elasticity of substitution of a KLEM production function without nesting constraints: The case of the Variable Output Elasticity-Cobb Douglas," Conference papers 333423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Elena Lagomarsino & Karen Turner, 2017. "Is the production function Translog or CES? An empirical illustration using UK data," Working Papers 1713, University of Strathclyde Business School, Department of Economics.
    15. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    16. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    17. Marc Germain, 2020. "Limits to growth and structural change," Post-Print hal-03129992, HAL.
    18. Jean-François Fagnart & Marc Germain & Benjamin Peeters, 2020. "Can the Energy Transition Be Smooth? A General Equilibrium Approach to the EROEI," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    19. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
    20. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.

    More about this item

    Keywords

    Energy economics; Integrated assessment modeling; Climate policy; Thermodynamics;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:81:y:2019:i:c:p:63-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.