IDEAS home Printed from https://ideas.repec.org/p/cth/wpaper/gru_2018_022.html
   My bibliography  Save this paper

Belief Error and Non-Bayesian Social Learning: An Experimental Evidence

Author

Listed:
  • Bogaçhan Çelen

    (University of Melbourne)

  • Sen Geng

    (Xiamen University)

  • Huihui Li

    (Xiamen University)

Abstract

This paper experimentally studies whether individuals hold a first-order belief that others apply Bayes’ rule to incorporate private information into their beliefs, which is a fundamental assumption in many Bayesian and non-Bayesian social learning models. We design a novel experimental setting in which the first-order belief assumption implies that social information is equivalent to private information. Our main finding is that participants’ reported reservation prices of social information are significantly lower than those of private information, which provides evidence that casts doubt on the first-order belief assumption. We also build a novel belief error model in which participants form a random posterior belief with a Bayesian posterior belief kernel to explain the experimental findings. The structural estimation of the model suggests that participants’ sophisticated consideration of others’ belief error and their exaggeration of the error both contribute to the difference in reservation prices.

Suggested Citation

  • Bogaçhan Çelen & Sen Geng & Huihui Li, 2018. "Belief Error and Non-Bayesian Social Learning: An Experimental Evidence," GRU Working Paper Series GRU_2018_022, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
  • Handle: RePEc:cth:wpaper:gru_2018_022
    as

    Download full text from publisher

    File URL: https://www.cb.cityu.edu.hk/ef/doc/GRU/WPS/GRU%232018-022%20Geng.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberta De Filippis & Antonio Guarino & Philippe Jehiel & Toru Kitagawa, 2016. "Updating ambiguous beliefs in a social learning experiment," CeMMAP working papers 18/16, Institute for Fiscal Studies.
    2. , G. & , & ,, 2008. "Non-Bayesian updating: A theoretical framework," Theoretical Economics, Econometric Society, vol. 3(2), June.
    3. Angela A. Hung & Charles R. Plott, 2001. "Information Cascades: Replication and an Extension to Majority Rule and Conformity-Rewarding Institutions," American Economic Review, American Economic Association, vol. 91(5), pages 1508-1520, December.
    4. Larry G. Epstein, 2006. "An Axiomatic Model of Non-Bayesian Updating," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(2), pages 413-436.
    5. Holt, Charles A. & Smith, Angela M., 2009. "An update on Bayesian updating," Journal of Economic Behavior & Organization, Elsevier, vol. 69(2), pages 125-134, February.
    6. Antonio Guarino & Philippe Jehiel, 2013. "Social Learning with Coarse Inference," American Economic Journal: Microeconomics, American Economic Association, vol. 5(1), pages 147-174, February.
    7. Markus Noth & Martin Weber, 2003. "Information Aggregation with Random Ordering: Cascades and Overconfidence," Economic Journal, Royal Economic Society, vol. 113(484), pages 166-189, January.
    8. Venkatesh Bala & Sanjeev Goyal, 1998. "Learning from Neighbours," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 595-621.
    9. Jacob K. Goeree & Thomas R. Palfrey & Brian W. Rogers & Richard D. McKelvey, 2007. "Self-Correcting Information Cascades," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 733-762.
    10. Pietro Ortoleva, 2012. "Modeling the Change of Paradigm: Non-Bayesian Reactions to Unexpected News," American Economic Review, American Economic Association, vol. 102(6), pages 2410-2436, October.
    11. Georg Weizsacker, 2010. "Do We Follow Others When We Should? A Simple Test of Rational Expectations," American Economic Review, American Economic Association, vol. 100(5), pages 2340-2360, December.
    12. Bohren, J. Aislinn, 2016. "Informational herding with model misspecification," Journal of Economic Theory, Elsevier, vol. 163(C), pages 222-247.
    13. Charles R. Plott & Kathryn Zeiler, 2005. "The Willingness to Pay–Willingness to Accept Gap, the "Endowment Effect," Subject Misconceptions, and Experimental Procedures for Eliciting Valuations," American Economic Review, American Economic Association, vol. 95(3), pages 530-545, June.
    14. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    15. repec:hal:pseose:hal-00813047 is not listed on IDEAS
    16. Eliaz, Kfir & Schotter, Andrew, 2010. "Paying for confidence: An experimental study of the demand for non-instrumental information," Games and Economic Behavior, Elsevier, vol. 70(2), pages 304-324, November.
    17. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    18. Dorothea Kübler & Georg Weizsäcker, 2004. "Limited Depth of Reasoning and Failure of Cascade Formation in the Laboratory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(2), pages 425-441.
    19. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    20. Anderson, Lisa R & Holt, Charles A, 1997. "Information Cascades in the Laboratory," American Economic Review, American Economic Association, vol. 87(5), pages 847-862, December.
    21. Matthew Rabin, 1998. "Psychology and Economics," Journal of Economic Literature, American Economic Association, vol. 36(1), pages 11-46, March.
    22. Yaw Nyarko & Andrew Schotter & Barry Sopher, 2006. "On the informational content of advice: a theoretical and experimental study," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 433-452, October.
    23. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    24. Dominitz, Jeff & Hung, Angela A., 2009. "Empirical models of discrete choice and belief updating in observational learning experiments," Journal of Economic Behavior & Organization, Elsevier, vol. 69(2), pages 94-109, February.
    25. Lones Smith & Peter Sorensen, 2000. "Pathological Outcomes of Observational Learning," Econometrica, Econometric Society, vol. 68(2), pages 371-398, March.
    26. Andrew Caplin & Mark Dean, 2015. "Revealed Preference, Rational Inattention, and Costly Information Acquisition," American Economic Review, American Economic Association, vol. 105(7), pages 2183-2203, July.
    27. Bogaçhan Çelen & Shachar Kariv, 2004. "Distinguishing Informational Cascades from Herd Behavior in the Laboratory," American Economic Review, American Economic Association, vol. 94(3), pages 484-498, June.
    28. Matthew Rabin & Joel L. Schrag, 1999. "First Impressions Matter: A Model of Confirmatory Bias," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 37-82.
    29. Timothy N. Cason & Charles R. Plott, 2014. "Misconceptions and Game Form Recognition: Challenges to Theories of Revealed Preference and Framing," Journal of Political Economy, University of Chicago Press, vol. 122(6), pages 1235-1270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arieli, Itai & Babichenko, Yakov & Müller, Stephan & Pourbabaee, Farzad & Tamuz, Omer, 0. "The hazards and benefits of condescension in social learning," Theoretical Economics, Econometric Society.
    2. Irenaeus Wolff & Dominik Folli, 2024. "Why Is Belief-Action Consistency so Low? The Role of Belief Uncertainty," TWI Research Paper Series 130, Thurgauer Wirtschaftsinstitut, Universität Konstanz.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Penczynski, Stefan P., 2017. "The nature of social learning: Experimental evidence," European Economic Review, Elsevier, vol. 94(C), pages 148-165.
    2. Anthony Ziegelmeyer & Frédéric Koessler & Juergen Bracht & Eyal Winter, 2010. "Fragility of information cascades: an experimental study using elicited beliefs," Experimental Economics, Springer;Economic Science Association, vol. 13(2), pages 121-145, June.
    3. Lukas Meub & Till Proeger & Hendrik Hüning, 2017. "A comparison of endogenous and exogenous timing in a social learning experiment," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 143-166, April.
    4. Syngjoo Choi & Edoardo Gallo & Shachar Kariv, 2015. "Networks in the laboratory," Cambridge Working Papers in Economics 1551, Faculty of Economics, University of Cambridge.
    5. Syngjoo Choi & Douglas Gale & Shachar Kariv, 2012. "Social learning in networks: a Quantal Response Equilibrium analysis of experimental data," Review of Economic Design, Springer;Society for Economic Design, vol. 16(2), pages 135-157, September.
    6. Paul J. Healy & John Conlon & Yeochang Yoon, 2016. "Information Cascades with Informative Ratings: An Experimental Test," Working Papers 16-05, Ohio State University, Department of Economics.
    7. Cao, Qian & Li, Jianbiao & Niu, Xiaofei, 2019. "The role of overconfidence in overweighting private information: Does gender matter?," EconStor Preprints 203448, ZBW - Leibniz Information Centre for Economics.
    8. Jonathan E. Alevy & Michael S. Haigh & John List, 2006. "Information Cascades: Evidence from An Experiment with Financial Market Professionals," NBER Working Papers 12767, National Bureau of Economic Research, Inc.
    9. Marco Angrisani & Antonio Guarino & Philippe Jehiel & Toru Kitagawa, 2021. "Information Redundancy Neglect versus Overconfidence: A Social Learning Experiment," American Economic Journal: Microeconomics, American Economic Association, vol. 13(3), pages 163-197, August.
    10. Vincent Mak & Rami Zwick, 2014. "Experimenting and learning with localized direct communication," Experimental Economics, Springer;Economic Science Association, vol. 17(2), pages 262-284, June.
    11. Duffy, John & Hopkins, Ed & Kornienko, Tatiana & Ma, Mingye, 2019. "Information choice in a social learning experiment," Games and Economic Behavior, Elsevier, vol. 118(C), pages 295-315.
    12. James C. D. Fisher & John Wooders, 2017. "Interacting information cascades: on the movement of conventions between groups," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(1), pages 211-231, January.
    13. Bohren, J. Aislinn, 2016. "Informational herding with model misspecification," Journal of Economic Theory, Elsevier, vol. 163(C), pages 222-247.
    14. Duffy, John & Hopkins, Ed & Kornienko, Tatiana, 2021. "Lone wolf or herd animal? Information choice and learning from others," European Economic Review, Elsevier, vol. 134(C).
    15. Fahr, René & Irlenbusch, Bernd, 2011. "Who follows the crowd—Groups or individuals?," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 200-209.
    16. Corazzini, Luca & Pavesi, Filippo & Petrovich, Beatrice & Stanca, Luca, 2012. "Influential listeners: An experiment on persuasion bias in social networks," European Economic Review, Elsevier, vol. 56(6), pages 1276-1288.
    17. De Filippis, Roberta & Guarino, Antonio & Jehiel, Philippe & Kitagawa, Toru, 2022. "Non-Bayesian updating in a social learning experiment," Journal of Economic Theory, Elsevier, vol. 199(C).
    18. Asanov, Igor, 2021. "Bandit cascade: A test of observational learning in the bandit problem," Journal of Economic Behavior & Organization, Elsevier, vol. 189(C), pages 150-171.
    19. Christophe Bisière & Jean-Paul Décamps & Stefano Lovo, 2015. "Risk Attitude, Beliefs Updating, and the Information Content of Trades: An Experiment," Management Science, INFORMS, vol. 61(6), pages 1378-1397, June.
    20. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.

    More about this item

    Keywords

    private information; social information; belief error; non-Bayesian social learning;
    All these keywords.

    JEL classification:

    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cth:wpaper:gru_2018_022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: GRU (email available below). General contact details of provider: https://edirc.repec.org/data/decithk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.