IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/6266.html
   My bibliography  Save this paper

Asymptotic properties for a simulated pseudo maximum likelihood estimator

Author

Listed:
  • Núñez, Olivier

Abstract

We propose an estimator for parameters of nonlinear mixed effects model, obtained by maximization of a simulated pseudo likelihood. This simulated criterion is constructed from the likelihood of a Gaussian model whose means and variances are given by Monte Carlo approximations of means and variances of the true model. If the number of experimental units and the sample size of Monte Carlo simulations are respectively denoted by N and K, we obtained the strong consistency and asymptotic normality of the estimator when the ratio NJ/2 /K tends to zero.

Suggested Citation

  • Núñez, Olivier, 1998. "Asymptotic properties for a simulated pseudo maximum likelihood estimator," DES - Working Papers. Statistics and Econometrics. WS 6266, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:6266
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/ecf58998-390f-4604-8668-88c5bb698b64/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Gouriéroux & Alain Monfort, 1991. "Simulation Based Inference in Models with Heterogeneity," Annals of Economics and Statistics, GENES, issue 20-21, pages 69-107.
    2. Ramos, Rogelio Q. & Pantula, Sastry G., 1995. "Estimation of nonlinear random coefficient models," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 49-56, July.
    3. Andrews, Donald W K, 1987. "Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers [On Unification of the Asymptotic Theory of Nonlinear Econometric Models]," Econometrica, Econometric Society, vol. 55(6), pages 1465-1471, November.
    4. repec:adr:anecst:y:1991:i:20-21:p:04 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Concordet, Didier & Nunez, Olivier G., 2002. "A simulated pseudo-maximum likelihood estimator for nonlinear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 187-201, April.
    2. M. Hashem Pesaran & Yongcheol Shin, 2002. "Long-Run Structural Modelling," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 49-87.
    3. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2017. "Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 883-883, April.
    4. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    5. Mayer, Walter J., 1999. "An extension of the maximum score estimator for disequilibrium models," Economics Letters, Elsevier, vol. 64(2), pages 143-149, August.
    6. de Jong, Robert M. & Woutersen, Tiemen, 2011. "Dynamic Time Series Binary Choice," Econometric Theory, Cambridge University Press, vol. 27(4), pages 673-702, August.
    7. Erik Meijer & Jan Rouwendal, 2006. "Measuring welfare effects in models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 227-244, March.
    8. Lei, J., 2013. "Smoothed Spatial Maximum Score Estimation of Spatial Autoregressive Binary Choice Panel Models," Other publications TiSEM d63bf400-7ff2-4a1c-8067-1, Tilburg University, School of Economics and Management.
    9. Gregory Connor & Matthias Hagmann & Oliver Linton, 2007. "Efficient Estimation of a Semiparametric Characteristic- Based Factor Model of Security Returns," Swiss Finance Institute Research Paper Series 07-26, Swiss Finance Institute.
    10. Bolduc, Denis & Kaci, Mustapha, 1993. "Estimation des modèles probit polytomiques : un survol des techniques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 69(3), pages 161-191, septembre.
    11. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    12. Tobias Müller & Stefan Boes, 2020. "Disability insurance benefits and labor supply decisions: evidence from a discontinuity in benefit awards," Empirical Economics, Springer, vol. 58(5), pages 2513-2544, May.
    13. Jenish, Nazgul & Prucha, Ingmar R., 2009. "Central limit theorems and uniform laws of large numbers for arrays of random fields," Journal of Econometrics, Elsevier, vol. 150(1), pages 86-98, May.
    14. Elliott, Graham & Lieli, Robert P., 2013. "Predicting binary outcomes," Journal of Econometrics, Elsevier, vol. 174(1), pages 15-26.
    15. Calzolari, Giorgio & Magazzini, Laura & Mealli, Fabrizia, 2001. "Simulation-based estimation of Tobit model with random effects," MPRA Paper 22985, University Library of Munich, Germany, revised 2001.
    16. Paul Rilstone, 2021. "Higher-Order Stochastic Expansions and Approximate Moments for Non-linear Models with Heterogeneous Observations," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 99-120, December.
    17. Berkowitz, Jeremy, 2001. "Generalized spectral estimation of the consumption-based asset pricing model," Journal of Econometrics, Elsevier, vol. 104(2), pages 269-288, September.
    18. Nicholas C.S. Sim, 2009. "Modeling Quantile Dependence: A New Look at the Money-Output Relationship," School of Economics and Public Policy Working Papers 2009-34, University of Adelaide, School of Economics and Public Policy.
    19. Emmanuel Duguet & Claire Lelarge, 2012. "Does Patenting Increase the Private Incentives to Innovate? A Microeconometric Analysis," Annals of Economics and Statistics, GENES, issue 107-108, pages 201-238.
    20. Elise Coudin & Jean-Marie Dufour, 2017. "Finite-sample generalized confidence distributions and sign-based robust estimators in median regressions with heterogenous dependent errors," CIRANO Working Papers 2017s-06, CIRANO.

    More about this item

    Keywords

    Nonlinear mixed-effects models;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:6266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.