IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/33453.html
   My bibliography  Save this paper

Robust estimation and forecasting of climate change using score-driven ice-age models

Author

Abstract

ScScore-driven models applied to finance and economics have attracted significant attention in the last decade. In this paper, we apply those models to climate data. We study the robustness of a recent climate econometric model, named ice-age model, and we extend that model by using score-driven filters in the measurement and transition equations. The climate variables considered are Antarctic ice volume Icet, atmospheric carbon dioxide level CO2,t, and land surface temperature Tempt, which during the history of the Earth were driven by exogenous variables. The influence of humanity on climate started approximately 10-15 thousand years ago, and it has significantly increased since then. We forecast the climate variables for the last 100 thousand years, by using data for the period of 798 thousand years ago to 101 thousand years ago for which humanity did not influence the Earth’s climate. For the last 10-15 thousand years of the forecasting period, we find that: (i) the forecasts of Icet are above the observed Icet, (ii) the forecasts of the CO2,t level are below the observed CO2,t, and (iii) the forecasts of Tempt are below the observed Tempt. Our results are robust, and they disentangle the effects of humanity and orbital variables.

Suggested Citation

  • Blazsek, Szabolcs, 2021. "Robust estimation and forecasting of climate change using score-driven ice-age models," UC3M Working papers. Economics 33453, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:33453
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/256aa83c-6288-455a-931f-f0603e8158b2/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    2. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 665-696.
    3. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, September.
    4. Drew Creal & Siem Jan Koopman & André Lucas, 2008. "A General Framework for Observation Driven Time-Varying Parameter Models," Tinbergen Institute Discussion Papers 08-108/4, Tinbergen Institute.
    5. Sarah Ineson & Amanda C. Maycock & Lesley J. Gray & Adam A. Scaife & Nick J. Dunstone & Jerald W. Harder & Jeff R. Knight & Mike Lockwood & James C. Manners & Richard A. Wood, 2015. "Regional climate impacts of a possible future grand solar minimum," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    6. Ben Bronselaer & Michael Winton & Stephen M. Griffies & William J. Hurlin & Keith B. Rodgers & Olga V. Sergienko & Ronald J. Stouffer & Joellen L. Russell, 2018. "Change in future climate due to Antarctic meltwater," Nature, Nature, vol. 564(7734), pages 53-58, December.
    7. J. L. Wadham & J. R. Hawkings & L. Tarasov & L. J. Gregoire & R. G. M. Spencer & M. Gutjahr & A. Ridgwell & K. E. Kohfeld, 2019. "Publisher Correction: Ice sheets matter for the global carbon cycle," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    8. J. L. Wadham & J. R. Hawkings & L. Tarasov & L. J. Gregoire & R. G. M. Spencer & M. Gutjahr & A. Ridgwell & K. E. Kohfeld, 2019. "Ice sheets matter for the global carbon cycle," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blazsek, Szabolcs & Escribano, Alvaro, 2023. "Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts," Energy Economics, Elsevier, vol. 118(C).
    2. Blazsek, Szabolcs & Escribano, Alvaro & Kristof, Erzsebet, 2024. "Global, Arctic, and Antarctic sea ice volume predictions using score-driven threshold climate models," Energy Economics, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janus, Paweł & Koopman, Siem Jan & Lucas, André, 2014. "Long memory dynamics for multivariate dependence under heavy tails," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 187-206.
    2. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
    3. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
    4. Giuseppe Buccheri & Giacomo Bormetti & Fulvio Corsi & Fabrizio Lillo, 2018. "A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics," Papers 1803.04894, arXiv.org, revised Mar 2019.
    5. Harvey, A., 2021. "Score-driven time series models," Cambridge Working Papers in Economics 2133, Faculty of Economics, University of Cambridge.
    6. Lin Zhao & Sweder van Wijnbergen, 2015. "Asset Pricing in Incomplete Markets: Valuing Gas Storage Capacity," Tinbergen Institute Discussion Papers 15-104/VI/DSF95, Tinbergen Institute.
    7. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    8. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    9. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    10. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    11. Rutger-Jan Lange & Andre Lucas & Arjen H. Siegmann, 2016. "Score-Driven Systemic Risk Signaling for European Sovereign Bond Yields and CDS Spreads," Tinbergen Institute Discussion Papers 16-064/IV, Tinbergen Institute.
    12. Leopoldo Catania, 2016. "Dynamic Adaptive Mixture Models," Papers 1603.01308, arXiv.org, revised Jan 2023.
    13. Lucas, André & Zhang, Xin, 2016. "Score-driven exponentially weighted moving averages and Value-at-Risk forecasting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
    14. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    15. Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
    16. Francq, Christian & Zakoian, Jean-Michel, 2023. "Local Asymptotic Normality Of General Conditionally Heteroskedastic And Score-Driven Time-Series Models," Econometric Theory, Cambridge University Press, vol. 39(5), pages 1067-1092, October.
    17. Davide Delle Monache & Ivan Petrella & Fabrizio Venditti, 2021. "Price Dividend Ratio and Long-Run Stock Returns: A Score-Driven State Space Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1054-1065, October.
    18. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Maximum Likelihood Estimation for correctly Specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Conditions and Asymptotic Properties," Tinbergen Institute Discussion Papers 14-074/III, Tinbergen Institute.
    19. Mohamed El Ghourabi & Asma Nani & Imed Gammoudi, 2021. "A value‐at‐risk computation based on heavy‐tailed distribution for dynamic conditional score models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2790-2799, April.
    20. Harvey, Andrew & Thiele, Stephen, 2016. "Testing against changing correlation," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 575-589.

    More about this item

    Keywords

    Climate Change;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:33453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.eco.uc3m.es/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.