IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/30116.html
   My bibliography  Save this paper

Using Stata to estimate dynamic correlated random effectsprobit models with unbalanced panels

Author

Abstract

This paper implements the estimation of dynamic probit correlated random effects (CRE) models with unbalanced panel data. The type of models we consider include a lag of the endogenous variable and other explanatory variables that are strictly exogenous. We introduce a Stata package, xtprobitunbal; this command estimates these models allowing for the unbalancedness process to be correlated with the time-invariant unobserved heterogeneity. It reduces the computational burden of the maximum likelihood (ML) estimation, while keeping its good asymptotic properties.We also introduce the command mgf_unbal to compute the marginal effects ofthe variables of the model and its standard errors. Finally, we study the estimation of CRE unbalanced panel data probit models by ML estimation and under more restrictive assumptions than the ones considered by xtprobitunbal, discussing the main problems to implement them.

Suggested Citation

  • Albarrán, Pedro, 2020. "Using Stata to estimate dynamic correlated random effectsprobit models with unbalanced panels," UC3M Working papers. Economics 30116, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:30116
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/a0b107a6-5f40-4a51-aea0-608a6a4acf7a/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rabe-Hesketh, Sophia & Skrondal, Anders, 2013. "Avoiding biased versions of Wooldridge’s simple solution to the initial conditions problem," Economics Letters, Elsevier, vol. 120(2), pages 346-349.
    2. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
    3. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    4. Wiji Arulampalam & Mark B. Stewart, 2009. "Simplified Implementation of the Heckman Estimator of the Dynamic Probit Model and a Comparison with Alternative Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 659-681, October.
    5. Pedro Albarran & Raquel Carrasco & Jesus M. Carro, 2019. "Estimation of Dynamic Nonlinear Random Effects Models with Unbalanced Panels," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(6), pages 1424-1441, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corradini, Carlo & D'Ippolito, Beatrice, 2022. "Persistence and learning effects in design innovation: Evidence from panel data," Research Policy, Elsevier, vol. 51(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lionel WILNER, 2019. "The Dynamics of Individual Happiness," Working Papers 2019-18, Center for Research in Economics and Statistics.
    2. Georgios Marios Chrysanthou, 2021. "A Multiple Cohort Study of the Gender Gradient of Life Satisfaction during Adolescence: Longitudinal Evidence from Great Britain," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1341-1376, December.
    3. Lucchetti, Riccardo & Pigini, Claudia, 2017. "DPB: Dynamic Panel Binary Data Models in gretl," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i08).
    4. Chrysanthou, Georgios Marios & Guilló, María Dolores, 2016. "The Dynamics of Heterogeneous Political Party Support and Egocentric Economic Evaluations: the Scottish Case," QM&ET Working Papers 16-3, University of Alicante, D. Quantitative Methods and Economic Theory.
    5. Pedro Albarran & Raquel Carrasco & Jesus M. Carro, 2019. "Estimation of Dynamic Nonlinear Random Effects Models with Unbalanced Panels," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(6), pages 1424-1441, December.
    6. Chrysanthou, Georgios Marios & Guilló, María Dolores, 2018. "The dynamics of political party support and egocentric economic evaluations: The Scottish case," European Journal of Political Economy, Elsevier, vol. 52(C), pages 192-213.
    7. Manudeep Bhuller & Christian N. Brinch & Sebastian Königs, 2017. "Time Aggregation and State Dependence in Welfare Receipt," Economic Journal, Royal Economic Society, vol. 127(604), pages 1833-1873, September.
    8. Chrysanthou, Georgios Marios & Vasilakis, Chrysovalantis, 2018. "The Dynamics and Determinants of Bullying Victimisation," IZA Discussion Papers 11902, Institute of Labor Economics (IZA).
    9. Vesterberg, Mattias, 2018. "The effect of price on electricity contract choice," Energy Economics, Elsevier, vol. 69(C), pages 59-70.
    10. Vesterberg, Mattias, 2017. "The effect of price on electricity contract choice," Umeå Economic Studies 941, Umeå University, Department of Economics.
    11. Alexander Mosthaf & Thorsten Schank & Claus Schnabel, 2014. "Low-wage employment versus unemployment: Which one provides better prospects for women?," IZA Journal of European Labor Studies, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 3(1), pages 1-17, December.
    12. Ha Trong Nguyen & Luke B. Connelly, 2017. "The Dynamics of Informal Care Provision in an Australian Household Panel Survey: Previous Work Characteristics and Future Care Provision," The Economic Record, The Economic Society of Australia, vol. 93(302), pages 395-419, September.
    13. Abdelfeteh Bitat, 2018. "Environmental regulation and eco-innovation: the Porter hypothesis refined," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 8(3), pages 299-321, September.
    14. Sebastian Königs, 2013. "The Dynamics of Social Assistance Benefit Receipt in Germany: State Dependence Before and After the Hartz Reforms," OECD Social, Employment and Migration Working Papers 136, OECD Publishing.
    15. Riccardo (Jack) Lucchetti & Claudia Pigini, 2020. "Choice of solutions to the initial-conditions problem in dynamic panel probit models," Working Papers 2020:27, Department of Economics, University of Venice "Ca' Foscari".
    16. Syamsul Hidayat Pasaribu, 2016. "Persistence of Individual Unemployment in Indonesia: Dynamic Probit Analysis from Panel SUSENAS 2008-2010," International Journal of Economics and Financial Issues, Econjournals, vol. 6(3), pages 1239-1246.
    17. Joaquín Prieto, 2021. "Poverty traps and affluence shields: Modelling the persistence of income position in Chile," Working Papers 576, ECINEQ, Society for the Study of Economic Inequality.
    18. Chen, Maolong & Myers, Robert J. & Hu, Chaoran, 2020. "Estimating dynamic binary choice models using irregularly spaced panel data," Economics Letters, Elsevier, vol. 192(C).
    19. Schnitzlein, Daniel D. & Stephani, Jens, 2016. "Locus of Control and low-wage mobility," Journal of Economic Psychology, Elsevier, vol. 53(C), pages 164-177.
    20. Drescher, Katharina & Janzen, Benedikt, 2021. "Determinants, persistence, and dynamics of energy poverty: An empirical assessment using German household survey data," Energy Economics, Elsevier, vol. 102(C).

    More about this item

    Keywords

    Unbalanced panels;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:30116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.eco.uc3m.es/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.