IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2006039.html
   My bibliography  Save this paper

Cubic regularization of Newton’s method for convex problems with constraints

Author

Listed:
  • NESTEROV, Yu.

Abstract

In this paper we derive effciency estimates of the regularized Newton's method as applied to constrained convex minimization problems and to variational inequalities. We study a one- step Newton's method and its multistep accelerated version, which converges on smooth convex problems as O( 1 k3 ), where k is the iteration counter. We derive also the effciency estimate of a second-order scheme for smooth variational inequalities. Its global rate of convergence is established on the level O( 1 k ).

Suggested Citation

  • NESTEROV, Yu., 2006. "Cubic regularization of Newton’s method for convex problems with constraints," LIDAM Discussion Papers CORE 2006039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2006039
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp2006.html
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. NESTEROV, Yu, 2003. "Dual extrapolation and its applications for solving variational inequalities and related problems," LIDAM Discussion Papers CORE 2003068, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. NESTEROV, Yurii & POLYAK, Boris, 2003. "Cubic regularization of a Newton scheme and its global performance," LIDAM Discussion Papers CORE 2003041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hande Benson & David Shanno, 2014. "Interior-point methods for nonconvex nonlinear programming: cubic regularization," Computational Optimization and Applications, Springer, vol. 58(2), pages 323-346, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. NESTEROV, Yu., 2005. "Minimizing functions with bounded variation of subgradients," LIDAM Discussion Papers CORE 2005079, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Polyak, B.T., 2007. "Newton's method and its use in optimization," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1086-1096, September.
    3. NESTEROV, Yu, 2003. "Modified Gauss-Newton scheme with worst-case guarantees for its global performance," LIDAM Discussion Papers CORE 2003086, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
    5. NESTEROV, Yu., 2005. "Primal-dual subgradient methods for convex problems," LIDAM Discussion Papers CORE 2005067, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2006039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.