IDEAS home Printed from https://ideas.repec.org/p/com/wpaper/036.html
   My bibliography  Save this paper

Asset Allocation under Hierarchical Clustering

Author

Listed:
  • Jin Zhang
  • Dietmar Maringer

Abstract

This paper proposes a clustering asset allocation scheme which provides better risk-adjusted portfolio performance than those obtained from traditional asset allocation approaches such as the equal weight strategy and the Markowitz minimum variance allocation. The clustering criterion used, which involves maximization of the in-sample Sharpe ratio (SR), is different from traditional clustering criteria reported in the literature. Two evolutionary methods, namely Differential Evolution and Genetic Algorithm, are employed to search for such an optimal clustering structure given a cluster number. To explore the clustering impact on the SR, the in-sample and the out-of-sample SR distributions of the portfolios are studied using bootstrapped data as well as simulated paths from the single index market model. It was found that the SR distributions of the portfolios under the clustering asset allocation structure have higher mean values and skewness but approximately the same standard deviation and kurtosis than those in the non-clustered case. Genetic Algorithm is suggested as a more efficient approach than Differential Evolution for the purpose of solving the clustering problem.

Suggested Citation

  • Jin Zhang & Dietmar Maringer, 2010. "Asset Allocation under Hierarchical Clustering," Working Papers 036, COMISEF.
  • Handle: RePEc:com:wpaper:036
    as

    Download full text from publisher

    File URL: http://comisef.eu/files/wps036.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manfred Gilli & Peter Winker, 2008. "Review of Heuristic Optimization Methods in Econometrics," Working Papers 001, COMISEF.
    2. Francesco Lisi & Marco Corazza, 2008. "Clustering Financial Data for Mutual Fund Management," Springer Books, in: Cira Perna & Marilena Sibillo (ed.), Mathematical and Statistical Methods in Insurance and Finance, pages 157-164, Springer.
    3. Pattarin, Francesco & Paterlini, Sandra & Minerva, Tommaso, 2004. "Clustering financial time series: an application to mutual funds style analysis," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 353-372, September.
    4. Heath Windcliff & Phelim Boyle, 2004. "The 1/ Pension Investment Puzzle," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(3), pages 32-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marianna Lyra, 2010. "Heuristic Strategies in Finance – An Overview," Working Papers 045, COMISEF.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerrans, Paul & Yap, Ghialy, 2014. "Retirement savings investment choices: Sophisticated or naive?," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 233-250.
    2. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    3. Johannes Ruf & Kangjianan Xie, 2019. "The impact of proportional transaction costs on systematically generated portfolios," Papers 1904.08925, arXiv.org.
    4. Liu, Yu-Hsin, 2011. "Incorporating scatter search and threshold accepting in finding maximum likelihood estimates for the multinomial probit model," European Journal of Operational Research, Elsevier, vol. 211(1), pages 130-138, May.
    5. Tasca, Paolo & Mavrodiev, Pavlin & Schweitzer, Frank, 2014. "Quantifying the impact of leveraging and diversification on systemic risk," Journal of Financial Stability, Elsevier, vol. 15(C), pages 43-52.
    6. Boudt, Kris & Raza, Muhammad Wajid & Wauters, Marjan, 2019. "Evaluating the Shariah-compliance of equity portfolios: The weighting method matters," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 406-417.
    7. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    8. DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
    9. Paolo Tasca & Stefano Battiston, "undated". "Diversification and Financial Stability," Working Papers CCSS-11-001, ETH Zurich, Chair of Systems Design.
    10. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    11. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    12. Pinar OKAN GOKTEN & Furkan BASER & Soner GOKTEN, 2017. "Using fuzzy c-means clustering algorithm in financial health scoring," The Audit Financiar journal, Chamber of Financial Auditors of Romania, vol. 15(147), pages 385-385.
    13. Hazar Altınbaş & Vincenzo Pacelli & Edgardo Sica, 2022. "An Empirical Assessment of the Contagion Determinants in the Euro Area in a Period of Sovereign Debt Risk," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 8(2), pages 339-371, July.
    14. Jakob Grazzini & Matteo G. Richiardi, 2013. "Consistent Estimation of Agent-Based Models by Simulated Minimum Distance," LABORatorio R. Revelli Working Papers Series 130, LABORatorio R. Revelli, Centre for Employment Studies.
    15. Tasca, Paolo & Battiston, Stefano & Deghi, Andrea, 2017. "Portfolio diversification and systemic risk in interbank networks," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 96-124.
    16. Stephen Kinsella, 2012. "Blueprint For An Algorithmic Economics," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 101-111.
    17. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    18. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
    19. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    20. Florios, Kostas, 2018. "A hyperplanes intersection simulated annealing algorithm for maximum score estimation," Econometrics and Statistics, Elsevier, vol. 8(C), pages 37-55.

    More about this item

    Keywords

    Asset Allocation; Clustering Technique; Sharpe Ratio; Evolutionary Approach; Heuristic Optimization;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:com:wpaper:036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anil Khuman (email available below). General contact details of provider: http://www.comisef.eu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.