IDEAS home Printed from https://ideas.repec.org/p/col/000094/012973.html
   My bibliography  Save this paper

Heterogeneidad de los Índices de Producción Sectoriales de la Industria Colombiana

Author

Listed:
  • Davinson Stev Abril Salcedo
  • Luis Fernando Melo Velandia
  • Daniel Parra Amado

Abstract

En este documento se cuantifican medidas estadísticas sobre el comportamiento de los índices de producción industrial sectoriales en Colombia, las cuales permiten caracterizar su heterogeneidad para el período 1990 ? 2014. Dentro de los resultados más sobresalientes se destacan: i) existen cambios en las tasas de las expansión y en la volatilidad a nivel sectorial entre décadas, ii) todos los sectores estudiados tienen por lo menos un quiebre estructural, iii) la mayoría de industrias se ven afectadas por los efectos calendario de Semana Santa y días festivos, excepto por la refinación de petróleo, las sustancias químicas y vidrio, y iv) el ciclo económico de gran parte de las industrias se encuentra más vinculado al ciclo de la demanda externa que de la interna, aunque ambos son factores relevantes en la explicación del ciclo industrial sectorial. Los resultados obtenidos en el presente estudio apoyan la presencia de heterogeneidad sectorial dentro de la industria colombiana.

Suggested Citation

  • Davinson Stev Abril Salcedo & Luis Fernando Melo Velandia & Daniel Parra Amado, 2015. "Heterogeneidad de los Índices de Producción Sectoriales de la Industria Colombiana," Borradores de Economia 12973, Banco de la Republica.
  • Handle: RePEc:col:000094:012973
    as

    Download full text from publisher

    File URL: http://www.banrep.gov.co/sites/default/files/publicaciones/archivos/be_888.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jorge Andrés Tamayo Castaño, 2012. "Asimetrías en la demanda por trabajo en Colombia: el papel del ciclo económico," Borradores de Economia 689, Banco de la Republica de Colombia.
    2. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    3. Santiago Cajiao Raigosa & Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Pronósticos para una economía menos volátil: el caso colombiano," Coyuntura Económica, Fedesarrollo, December.
    4. Achim Zeileis, 2005. "A Unified Approach to Structural Change Tests Based on ML Scores, F Statistics, and OLS Residuals," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 445-466.
    5. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    6. Medina-Durango, Carlos Alberto & Posso Suárez, Christian Manuel & Tamayo, Jorge A. & Monsalve, Emma, 2012. "Dinámica de la demanda laboral en la industria manufacturera colombiana 1993-2009 : una estimación panel VAR," Chapters, in: Arango-Thomas, Luis Eduardo & Hamann-Salcedo, Franz Alonso (ed.), El mercado de trabajo en Colombia : hechos, tendencias e instituciones, chapter 7, pages 289-330, Banco de la Republica de Colombia.
    7. Juan Esteban Carranza & Stefany Moreno, 2013. "Tamaño y estructura vertical de la cadena de producción industrial colombiana desde 1990," Borradores de Economia 10416, Banco de la Republica.
    8. Ploberger, Werner & Kramer, Walter, 1992. "The CUSUM Test with OLS Residuals," Econometrica, Econometric Society, vol. 60(2), pages 271-285, March.
    9. Villarreal, Francisco G., 2005. "Elementos teóricos del ajuste estacional de series económicas utilizando X-12-ARIMA y TRAMO-SEATS," Estudios Estadísticos 4741, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    10. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    11. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    12. Juan José Echavarría & Mauricio Villamizar & colaboración Juanita González, 2006. "El Proceso Colombiano de Desindustrialización," Borradores de Economia 361, Banco de la Republica de Colombia.
    13. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1, June.
    14. Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Efectos calendario sobre la producción industrial en Colombia," Borradores de Economia 820, Banco de la Republica de Colombia.
    15. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters, in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1, National Bureau of Economic Research, Inc.
    16. Arango-Thomas, Luis Eduardo & Hamann-Salcedo, Franz Alonso (ed.), 2012. "El mercado de trabajo en Colombia : hechos, tendencias e instituciones," Books, Banco de la Republica de Colombia, number 2012-12.
    17. Ploberger, Werner & Kramer, Walter & Kontrus, Karl, 1989. "A new test for structural stability in the linear regression model," Journal of Econometrics, Elsevier, vol. 40(2), pages 307-318, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Aßmann & Jens Hogrefe & Roman Liesenfeld, 2009. "The decline in German output volatility: a Bayesian analysis," Empirical Economics, Springer, vol. 37(3), pages 653-679, December.
    2. G. Bruno & L. Crosilla & P. Margani, 2019. "Inspecting the Relationship Between Business Confidence and Industrial Production: Evidence on Italian Survey Data," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 15(1), pages 1-24, April.
    3. Haitham A. Al-Zoubi & Aktham Maghyereh, 2007. "Stationary Component in Stock Prices: A Reappraisal of Empirical Findings," Multinational Finance Journal, Multinational Finance Journal, vol. 11(3-4), pages 287-322, September.
    4. Carsten J. Crede, 2019. "A Structural Break Cartel Screen for Dating and Detecting Collusion," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 54(3), pages 543-574, May.
    5. Luis Fernando Melo Velandia & Martha Alicia Misas Arango, 2004. "Modelos Estructurales de Inflación en Colombia: Estimación a través de Mínimos Cuadrados Flexibles," Borradores de Economia 3244, Banco de la Republica.
    6. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    7. Candelon, Bertrand & Piplack, Jan & Straetmans, Stefan, 2008. "On measuring synchronization of bulls and bears: The case of East Asia," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1022-1035, June.
    8. Lazarova, Stepana, 2005. "Testing for structural change in regression with long memory processes," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 329-372.
    9. Camacho Maximo & Perez Quiros Gabriel, 2007. "Jump-and-Rest Effect of U.S. Business Cycles," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(4), pages 1-39, December.
    10. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2014. "Housing and the Great Depression," Applied Economics, Taylor & Francis Journals, vol. 46(24), pages 2966-2981, August.
    11. Kuan, Chung-Ming, 1998. "Tests for changes in models with a polynomial trend," Journal of Econometrics, Elsevier, vol. 84(1), pages 75-91, May.
    12. Silvana Bartoletto & Bruno Chiarini & Elisabetta Marzano & Paolo Piselli, 2015. "Business Cycles, Credit Cycles and Bank Holdings of Sovereign Bonds: Historical Evidence for Italy 1861-2013," CESifo Working Paper Series 5318, CESifo.
    13. Fabio Clementi & Marco Gallegati & Mauro Gallegati, 2015. "Growth and Cycles of the Italian Economy Since 1861: The New Evidence," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 1(1), pages 25-59, March.
    14. Cho, Jin Seo & White, Halbert, 2011. "Generalized runs tests for the IID hypothesis," Journal of Econometrics, Elsevier, vol. 162(2), pages 326-344, June.
    15. Liu, Guanchun & He, Lei & Yue, Yiding & Wang, Jiying, 2014. "The linkage between insurance activity and banking credit: Some evidence from dynamic analysis," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 239-265.
    16. Strohsal, Till & Proaño, Christian R. & Wolters, Jürgen, 2019. "Characterizing the financial cycle: Evidence from a frequency domain analysis," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 568-591.
    17. Meller, Barbara & Metiu, Norbert, 2015. "The synchronization of European credit cycles," Discussion Papers 20/2015, Deutsche Bundesbank.
    18. Makram El-Shagi & Sebastian Giesen, 2013. "Testing for Structural Breaks at Unknown Time: A Steeplechase," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 101-123, January.
    19. María Dolores Gadea & Ana Gómez‐Loscos & Gabriel Pérez‐Quirós, 2018. "Great Moderation And Great Recession: From Plain Sailing To Stormy Seas?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(4), pages 2297-2321, November.
    20. María Dolores Gadea-Rivas & Ana Gómez-Loscos & Gabriel Pérez-Quirós, 2014. "The two greatest. Great recession vs. great moderation," Working Papers 1423, Banco de España.

    More about this item

    Keywords

    Efectos calendario; descomposición de series; ciclos económicos.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000094:012973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angelica Bahos Olivera (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.