IDEAS home Printed from https://ideas.repec.org/p/cnb/wpaper/2017-7.html
   My bibliography  Save this paper

A BVAR Model for Forecasting of Czech Inflation

Author

Listed:
  • Frantisek Brazdik
  • Michal Franta

Abstract

Bayesian vector autoregressions (BVAR) have turned out to be useful for medium-term macroeconomic forecasting. Several features of the Czech economy strengthen the rationale for using this approach. These include in particular the short time series available and uncertainty about long-run trends. We compare forecasts based on a small-scale mean-adjusted BVAR with the official forecasts published by the Czech National Bank (CNB) over the period 2008q3-2016q4. The comparison demonstrates that the BVAR approach can provide more precise inflation forecasts over the monetary policy horizon. For other macroeconomic variables, the CNB forecasts either outperform or are comparable with the forecasts based on the BVAR model.

Suggested Citation

  • Frantisek Brazdik & Michal Franta, 2017. "A BVAR Model for Forecasting of Czech Inflation," Working Papers 2017/7, Czech National Bank.
  • Handle: RePEc:cnb:wpaper:2017/7
    as

    Download full text from publisher

    File URL: https://www.cnb.cz/export/sites/cnb/en/economic-research/.galleries/research_publications/cnb_wp/cnbwp_2017_07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    2. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    3. repec:cnb:ocpubv:rb13/1 is not listed on IDEAS
    4. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    5. Michal Andrle & Tibor Hledik & Ondra Kamenik & Jan Vlcek, 2009. "Implementing the New Structural Model of the Czech National Bank," Working Papers 2009/2, Czech National Bank.
    6. Chris Bloor, 2009. "The use of statistical forecasting models at the Reserve Bank of New Zealand," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 72, pages 21-26, June.
    7. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.
    8. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rybinski, Krzysztof, 2021. "Ranking professional forecasters by the predictive power of their narratives," International Journal of Forecasting, Elsevier, vol. 37(1), pages 186-204.
    2. Nadiia Shapovalenko, 2021. "A BVAR Model for Forecasting Ukrainian Inflation," IHEID Working Papers 05-2021, Economics Section, The Graduate Institute of International Studies.
    3. Martin Feldkircher & Nico Hauzenberger, 2019. "How useful are time-varying parameter models for forecasting economic growth in CESEE?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/19, pages 29-48.
    4. Michal Franta & Tomas Holub & Branislav Saxa, 2018. "Balance Sheet Implications of the Czech National Bank's Exchange Rate Commitment," Working Papers 2018/10, Czech National Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    2. Alistair Dieppe & Bjorn van Roye & Paolo. Bonomolo, 2017. "Re-assessing Monetary Policy Shocks in China," EcoMod2017 10524, EcoMod.
    3. Andres–Escayola, Erik & Berganza, Juan Carlos & Campos, Rodolfo G. & Molina, Luis, 2023. "A BVAR toolkit to assess macrofinancial risks in Brazil and Mexico," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(1).
    4. Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017. "Have Standard VARS Remained Stable Since the Crisis?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.
    5. Meredith Beechey & Pär Österholm, 2008. "A Bayesian Vector Autoregressive Model with Informative Steady‐state Priors for the Australian Economy," The Economic Record, The Economic Society of Australia, vol. 84(267), pages 449-465, December.
    6. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    7. Dieppe, Alistair & van Roye, Björn & Legrand, Romain, 2016. "The BEAR toolbox," Working Paper Series 1934, European Central Bank.
    8. Stefan Laséen & Andrea Pescatori, 2020. "Financial stability and interest‐rate policy: A quantitative assessment of costs and benefit," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(3), pages 1246-1273, August.
    9. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    10. Wieladek, Tomasz & Garcia Pascual, Antonio, 2016. "The European Central Bank’s QE: A new hope," CEPR Discussion Papers 11309, C.E.P.R. Discussion Papers.
    11. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    12. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
    13. Jarociński, Marek & Marcet, Albert, 2019. "Priors about observables in vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(2), pages 238-255.
    14. Pär Österholm, 2009. "Incorporating Judgement in Fan Charts," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(2), pages 387-415, June.
    15. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    16. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    17. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    18. Baumann, Ursel & Lodge, David & Miescu, Mirela S., 2019. "Global growth on life support? The contributions of fiscal and monetary policy since the global financial crisis," Working Paper Series 2248, European Central Bank.
    19. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
    20. Kociecki, Andrzej, 2012. "Orbital Priors for Time-Series Models," MPRA Paper 42804, University Library of Munich, Germany.

    More about this item

    Keywords

    BVAR; forecast evaluation; inflation targeting; real-time forecasting;
    All these keywords.

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cnb:wpaper:2017/7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jan Babecky (email available below). General contact details of provider: https://edirc.repec.org/data/cnbgvcz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.