IDEAS home Printed from https://ideas.repec.org/p/cmu/gsiawp/473528242.html
   My bibliography  Save this paper

MCMC Approach to Classical Estimation with Overidentifying Restrictions

Author

Listed:
  • Luis Quintero

Abstract

We extend the Laplace estimators approach proposed by Chernozhukov and Hong (2003) by incorporating information in the space of overidentifying re- strictions (OR) in GMM, information previously ignored during parameter es- timation in Bayesian methods. Parameters and test statistics are estimated simultaneously using the entire equation domain, not only the global mini- mum. Markov Chain Monte Carlo avoids the curse of dimensionality while kernel density estimation allows estimators that condition on OR being satis- fied. This method uses economic theory as criteria for estimate selection when facing multiplicity. Our estimators outperform counterparts in simulation of an asset pricing model in Hall and Horowitz (1996).

Suggested Citation

  • Luis Quintero, "undated". "MCMC Approach to Classical Estimation with Overidentifying Restrictions," GSIA Working Papers 2013-E13, Carnegie Mellon University, Tepper School of Business.
  • Handle: RePEc:cmu:gsiawp:473528242
    as

    Download full text from publisher

    File URL: https://student-3k.tepper.cmu.edu/gsiadoc/WP/2013-E13.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Manuel A. Domínguez & Ignacio N. Lobato, 2004. "Consistent Estimation of Models Defined by Conditional Moment Restrictions," Econometrica, Econometric Society, vol. 72(5), pages 1601-1615, September.
    3. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    5. Gregory, Allan W. & Lamarche, Jean-Francois & Smith, Gregor W., 2002. "Information-theoretic estimation of preference parameters: macroeconomic applications and simulation evidence," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 213-233, March.
    6. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    7. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 560-586, June.
    8. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    9. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    10. Eichenbaum, Martin, 1989. "Some Empirical Evidence on the Production Level and Production Cost Smoothing Models of Inventory Investment," American Economic Review, American Economic Association, vol. 79(4), pages 853-864, September.
    11. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    12. Sowell, Fallaw, 2006. "The Empirical Saddlepoint Approximation for GMM Estimators," MPRA Paper 3356, University Library of Munich, Germany, revised May 2007.
    13. Yuichi Kitamura, 2001. "Asymptotic Optimality of Empirical Likelihood for Testing Moment Restrictions," Econometrica, Econometric Society, vol. 69(6), pages 1661-1672, November.
    14. Susanne M Schennach, 2007. "Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models," Econometrica, Econometric Society, vol. 75(1), pages 201-239, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    2. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.
    3. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    4. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    5. Alain Guay & Jean-Francois Lamarche, 2005. "The Information Content of Implied Probabilities to Detect Structural Change," Working Papers 0804, Brock University, Department of Economics, revised Oct 2008.
    6. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    7. Otsu, Taisuke, 2010. "On Bahadur efficiency of empirical likelihood," Journal of Econometrics, Elsevier, vol. 157(2), pages 248-256, August.
    8. Shane M. Sherlund, 2004. "Quasi Empirical Likelihood Estimation of Moment Condition Models," Econometric Society 2004 North American Summer Meetings 507, Econometric Society.
    9. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    10. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    11. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    12. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    13. repec:hal:spmain:info:hdl:2441/293qice3lj861rvos9ns14n0h0 is not listed on IDEAS
    14. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    15. Yuichi Kitamura & Taisuke Otsu & Kirill Evdokimov, 2013. "Robustness, Infinitesimal Neighborhoods, and Moment Restrictions," Econometrica, Econometric Society, vol. 81(3), pages 1185-1201, May.
    16. Escanciano, Juan Carlos & Hoderlein, Stefan & Lewbel, Arthur & Linton, Oliver & Srisuma, Sorawoot, 2021. "Nonparametric Euler Equation Identification And Estimation," Econometric Theory, Cambridge University Press, vol. 37(5), pages 851-891, October.
    17. Mikio Ito & Akihiko Noda, 2012. "The GEL estimates resolve the risk-free rate puzzle in Japan," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 365-374, March.
    18. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    19. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
    20. Andersen, Torben G. & Sorensen, Bent E., 1997. "GMM and QML asymptotic standard deviations in stochastic volatility models: Comments on Ruiz (1994)," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 397-403.
    21. Canay, Ivan A. & Otsu, Taisuke, 2012. "Hodges–Lehmann optimality for testing moment conditions," Journal of Econometrics, Elsevier, vol. 171(1), pages 45-53.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cmu:gsiawp:473528242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Steve Spear (email available below). General contact details of provider: https://www.cmu.edu/tepper .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.