IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/95s-13.html
   My bibliography  Save this paper

Higher Moment Estimators for Linear Regression Models With Errors in the Variables

Author

Listed:
  • Denyse L. Dagenais
  • Marcel Dagenais

Abstract

This paper proposes instrumental variable estimators for multiple linear regression models with errors in the explanatory variables, that require no extraneous information. As is very well known, the ordinary least squares estimator (OLS), which is based on the sample moments of order two, is unbiased when there are no errors in the variables, but it becomes biased and inconsistent when there are such errors [Fuller (1987)]. In contrast, the suggested estimators are based on higher sample moments and can be considered as a special type of instrumental variable estimator. They are consistent, under quite reasonable assumptions, when there are measurement errors. While most consistent estimators based on higher moments (HM) proposed previously in the literature [Geary (1942), Drion (1951), Durbin (1954), Pal (1980)] for regressions with errors in the variables seem to be quite erratic [Kendall and Stuart (1963), Malinvaud (1978)], the suggested estimators appear to perform remarkably well in many situations. Although most data do contain errors of measurement, this fact is often ignored by the analysts and statistical procedures designed for data measured without error are applied. It is shown that ignoring the presence of even small measurement errors and using traditonal OLS estimators may lead to performing standard Student t-tests with type I errors of considerably higher sizes than intended, while this is not so with the proposed HM estimators. Our experimental findings suggest also that even if the sample is not very large, when the errors in the variables are non-negligible, our estimators do perform better than the OLS estimators in terms of root mean squared errors, when the explanatory variables are strongly correlated and the multiple correlation of the regression is high. Such situations are typical of many statistical analyses based on aggregate data. When the multiple correlation coefficient is smaller and the explanatory variables are less correlated, our HM estimators will still outperform the OLS estimator if the sample is large, even if the measurement errors are not very important. Such cases are frequently encountered in analyses of survey data. Tests for the presence of errors in the variables are also described, and the power of the tests are assessed in the Monte Carlo experiments. Nous proposons, pour les modèles de régression linéaire où les variables explicatives contiennent des erreurs de mesure, des estimateurs de variables instrumentales d'un type particulier, qui n'exigent aucune information extrinsèque. On sait que l'estimateur des moindres carrés ordinaires (MCO), qui est basé sur les moments échantillonnaux d'ordre deux, est centré lorsqu'il n'y a pas d'erreurs sur les variables0501s qu'il devient biaisé et non convergent en présence de telles erreurs [Fuller (1987)]. Par ailleurs, les estimateurs que nous suggérons sont basés sur des moments d'ordres supérieurs et peuvent être vus comme des estimateurs de variables instrumentales. Sous des hypothèses très raisonnables, ces estimateurs demeurent convergents même lorsqu'il y a des erreurs de mesure. Alors que la plupart des estimateurs convergents basés sur des moments d'ordres supérieurs (MOS) proposés antérieurement [Geary(1942), Drion(1951), Durbin (1954), Pal (1980)] pour les modèles de régression avec erreurs sur les variables, semblent très erratiques [Kendall et Stuart (1963), Malinvaud (1978)], les estimateurs que nous proposons se comportent remarquablement bien, dans un grand nombre de cas. Quoique la plupart des données contiennent des erreurs de mesure, ce fait est souvent ignoré par les analystes qui appliquent, la plupart du temps, des procédures statistiques conçues pour le traitement de données mesurées sans erreur. Nous démontrons que le fait de négliger la présence d'erreurs de mesure même relativement faibles et d'utiliser les estimateurs MCO traditionnels, peut faire en sorte que les tests de Student standards comportent des erreurs de type I dont le niveau est considérablement plus élevé que le niveau désiré, alors que ce n'est pas le cas si on utilise les estimateurs MOS proposés. Même si les échantillons ne sont pas très grands, les résultats de nos expériences suggèrent également que dans les cas où les erreurs sur les variables ne sont pas négligeables, le comportement de nos estimateurs lorsqu'on l'évalue en termes de la racine carrée des écarts quadratiques moyens, est supérieur à celui des MCO, quand les variables explicatives sont fortement corrélées et que le coefficient de corrélation multiple est élevé. Ce genre de situations est typique des analyses statistiques basées sur des données agrégées. Si le coefficient de corrélation multiple est moins élevé et que les variables explicatives sont moins corrélées, nos estimateurs MOS peuvent encore s'avérer supérieurs aux estimateurs MCO lorsque les échantillons sont suffisamment grands, et cela même si les erreurs de mesure ne sont pas aussi importantes. De tels cas se rencontrent fréquemment lorsqu'on a affaire à des données d'enquêtes. Nous décrivons également des tests d'erreurs sur les variables et nous évaluons la puissance de ces tests au moyen d'expériences de Monte-Carlo.

Suggested Citation

  • Denyse L. Dagenais & Marcel Dagenais, 1995. "Higher Moment Estimators for Linear Regression Models With Errors in the Variables," CIRANO Working Papers 95s-13, CIRANO.
  • Handle: RePEc:cir:cirwor:95s-13
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/95s-13.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    3. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    4. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    5. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    6. Dagenais, Marcel G., 1994. "Parameter estimation in regression models with errors in the variables and autocorrelated disturbances," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 145-163.
    7. Klepper, Steven & Leamer, Edward E, 1984. "Consistent Sets of Estimates for Regressions with Errors in All Variables," Econometrica, Econometric Society, vol. 52(1), pages 163-183, January.
    8. Joseph G. Altonji & Aloysius Siow, 1987. "Testing the Response of Consumption to Income Changes with (Noisy) Panel Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(2), pages 293-328.
    9. Dagenais, M.G. & Dagenais, D.L., 1994. "GMM Estimators for Linear Regression Models with Errors in the Variables," Cahiers de recherche 9404, Universite de Montreal, Departement de sciences economiques.
    10. Pal, Manoranjan, 1980. "Consistent moment estimators of regression coefficients in the presence of errors in variables," Journal of Econometrics, Elsevier, vol. 14(3), pages 349-364, December.
    11. Duncan, Greg J & Hill, Daniel H, 1985. "An Investigation of the Extent and Consequences of Measurement Error in Labor-Economic Survey Data," Journal of Labor Economics, University of Chicago Press, vol. 3(4), pages 508-532, October.
    12. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    13. repec:bla:revinw:v:37:y:1991:i:4:p:409-32 is not listed on IDEAS
    14. Fomby, Thomas B. & Guilkey, David K., 1978. "On choosing the optimal level of significance for the Durbin-Watson test and the Bayesian alternative," Journal of Econometrics, Elsevier, vol. 8(2), pages 203-213, October.
    15. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    16. Jeong, Jinook & Maddala, G S, 1991. "Measurement Errors and Tests for Rationality," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 431-439, October.
    17. Wu, De-Min, 1973. "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica, Econometric Society, vol. 41(4), pages 733-750, July.
    18. Marcel G. Dagenais, 1992. "Measuring Personal Savings, Consumption, and Disposable Income in Canada," Canadian Journal of Economics, Canadian Economics Association, vol. 25(3), pages 681-707, August.
    19. Grether, D M & Maddala, G S, 1973. "Errors in Variables and Serially Correlated Disturbances in Distributed Lag Models," Econometrica, Econometric Society, vol. 41(2), pages 255-262, March.
    20. Goldberger, Arthur S, 1972. "Structural Equation Methods in the Social Sciences," Econometrica, Econometric Society, vol. 40(6), pages 979-1001, November.
    21. Dagenais, M.G. & Dagenais, D.L., 1994. "GMM Estimators for Linear Regression Models with Errors in the Variables," Cahiers de recherche 9404, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    22. Griliches, Zvi, 1986. "Economic data issues," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 3, chapter 25, pages 1465-1514, Elsevier.
    23. Aigner, Dennis J. & Hsiao, Cheng & Kapteyn, Arie & Wansbeek, Tom, 1984. "Latent variable models in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 23, pages 1321-1393, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "Higher moment estimators for linear regression models with errors in the variables," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 193-221.
    2. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    3. Alain Coen & Francois-Éric Racicot, 2006. "A New Approach Based on Cumulants for Estimating Financial Regression Models with Errors in the Variables: the Fama and French Model Revisited," RePAd Working Paper Series UQO-DSA-wp142006, Département des sciences administratives, UQO.
    4. Jean-Louis ARCAND & Béatrice D'HOMBRES, 2002. "Explaining the Negative Coefficient Associated with Human Capital in Augmented Solow Growth Regressions," Working Papers 200227, CERDI.
    5. Jean-Louis ARCAND & Marcel DAGENAIS, 2005. "Errors in Variables and the Empirics of Economic Growth," Working Papers 200536, CERDI.
    6. Racicot, François-Éric & Rentz, William F., 2018. "Does Illiquidity Matter? An Errors-in-Variables Perspective/¿Es importante la iliquidez? Un análisis desde el enfoque de errores en variables," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 251-262, Enero.
    7. O'Brien, Raymond & Patacchini, Eleonora, 2003. "Testing the exogeneity assumption in panel data models with "non classical" disturbances," Discussion Paper Series In Economics And Econometrics 0302, Economics Division, School of Social Sciences, University of Southampton.
    8. Erik Biørn, 2002. "Handling the measurement error problem by means of panel data: Moment methods applied on firm data," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B6-1, International Conferences on Panel Data.
    9. Coën, Alain & Hübner, Georges, 2009. "Risk and performance estimation in hedge funds revisited: Evidence from errors in variables," Journal of Empirical Finance, Elsevier, vol. 16(1), pages 112-125, January.
    10. Coen, Alain & Racicot, Francois-Eric, 2007. "Capital asset pricing models revisited: Evidence from errors in variables," Economics Letters, Elsevier, vol. 95(3), pages 443-450, June.
    11. Rui HAO & Zheng WEI, 2009. "Sources Of Income Differences Across Chinese Provinces During The Reform Period: A Development Accounting Exercise," The Developing Economies, Institute of Developing Economies, vol. 47(1), pages 1-29, March.
    12. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    13. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    14. Rui Hao, 2011. "Sources of income differences across Chinese provinces during the reform period: a development accounting exercise," CERDI Working papers halshs-00557001, HAL.
    15. Gospodinov, Nikolay & Komunjer, Ivana & Ng, Serena, 2017. "Simulated minimum distance estimation of dynamic models with errors-in-variables," Journal of Econometrics, Elsevier, vol. 200(2), pages 181-193.
    16. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    17. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    18. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2003. "Instrumental variables and GMM: Estimation and testing," Stata Journal, StataCorp LP, vol. 3(1), pages 1-31, March.
    19. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    20. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.

    More about this item

    Keywords

    Errors in the variables; Measurement errors; Higher moment estimators; Instrumental variable estimators; Erreurs sur les variables ; Erreurs de mesure ; Variables instrumentales ; Moments d'ordres supérieurs;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:95s-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.