IDEAS home Printed from https://ideas.repec.org/p/chu/wpaper/15-11.html
   My bibliography  Save this paper

Error and Generalization in Discrete Choice Under Risk

Author

Listed:
  • Nathaniel T. Wilcox

    (Economic Science Institute (Chapman University) and Center for the Economic Analysis of Risk (Georgia State University))

Abstract

I compare the generalization ability, or out-of-sample predictive success, of four probabilistic models of binary discrete choice under risk. One model is the conventional homoscedastic latent index model—the simple logit—that is common in applied econometrics: This model is “context-free” in the sense that its error part is homoscedastic with respect to decision sets. The other three models are also latent index models but their error part is heteroscedastic with respect to decision sets: In that sense they are “context-dependent” models. Context-dependent models of choice under risk arise from several different theoretical perspectives. Here I consider my own “contextual utility” model (Wilcox 2011), the “decision field theory” model of Busemeyer and Townsend (1993) and the “Blavatskyy-Fishburn” model (Fishburn 1978; Blavatskyy 2014). In a new experiment, all three context-dependent models outperform the context-free model in prediction, and significantly outperform a linear probability model (suggested by contemporary applied practice a la Angrist and Pischke 2009) when the latent preference structure is rank-dependent utility (Quiggin 1982). All of this holds true for function-free estimations of outcome utilities and probability weights as well as parametric estimations. Preoccupation with theories of the deterministic structure of choice under risk, to the exclusion of theories of error, is a mistake.

Suggested Citation

  • Nathaniel T. Wilcox, 2015. "Error and Generalization in Discrete Choice Under Risk," Working Papers 15-11, Chapman University, Economic Science Institute.
  • Handle: RePEc:chu:wpaper:15-11
    as

    Download full text from publisher

    File URL: http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/error-and-generalization-wilcox-may-2015.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fishburn, Peter C, 1978. "A Probabilistic Expected Utility Theory of Risky Binary Choices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(3), pages 633-646, October.
    2. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 45(3), pages 809-829, August.
    3. repec:bla:econom:v:65:y:1998:i:260:p:581-98 is not listed on IDEAS
    4. Christopher Baum & Yingying Dong & Arthur Lewbel & Tao Yang, 2012. "Binary choice models with endogenous regressors," SAN12 Stata Conference 9, Stata Users Group.
    5. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    6. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    7. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    8. Blavatskyy, Pavlo R., 2006. "Violations of betweenness or random errors?," Economics Letters, Elsevier, vol. 91(1), pages 34-38, April.
    9. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    10. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    11. John D. Hey, 2018. "Does Repetition Improve Consistency?," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 2, pages 13-62, World Scientific Publishing Co. Pte. Ltd..
    12. Manski, Charles F. & Thompson, T. Scott, 1986. "Operational characteristics of maximum score estimation," Journal of Econometrics, Elsevier, vol. 32(1), pages 85-108, June.
    13. James Cox & Vjollca Sadiraj & Ulrich Schmidt, 2015. "Paradoxes and mechanisms for choice under risk," Experimental Economics, Springer;Economic Science Association, vol. 18(2), pages 215-250, June.
    14. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    15. Busemeyer, Jerome R. & Townsend, James T., 1992. "Fundamental derivations from decision field theory," Mathematical Social Sciences, Elsevier, vol. 23(3), pages 255-282, June.
    16. Clarke, Kevin A., 2007. "A Simple Distribution-Free Test for Nonnested Model Selection," Political Analysis, Cambridge University Press, vol. 15(3), pages 347-363, July.
    17. Graham Loomes, 2005. "Modelling the Stochastic Component of Behaviour in Experiments: Some Issues for the Interpretation of Data," Experimental Economics, Springer;Economic Science Association, vol. 8(4), pages 301-323, December.
    18. Wilcox, Nathaniel T., 2011. "'Stochastically more risk averse:' A contextual theory of stochastic discrete choice under risk," Journal of Econometrics, Elsevier, vol. 162(1), pages 89-104, May.
    19. Graham Loomes & Ganna Pogrebna, 2014. "Measuring Individual Risk Attitudes when Preferences are Imprecise," Economic Journal, Royal Economic Society, vol. 0(576), pages 569-593, May.
    20. Glenn Harrison & J. Swarthout, 2014. "Experimental payment protocols and the Bipolar Behaviorist," Theory and Decision, Springer, vol. 77(3), pages 423-438, October.
    21. David J. Butler & Graham C. Loomes, 2007. "Imprecision as an Account of the Preference Reversal Phenomenon," American Economic Review, American Economic Association, vol. 97(1), pages 277-297, March.
    22. John D. Hey & Chris Orme, 2018. "Investigating Generalizations Of Expected Utility Theory Using Experimental Data," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 3, pages 63-98, World Scientific Publishing Co. Pte. Ltd..
    23. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    24. Pavlo R. Blavatskyy, "undated". "A Stochastic Expected Utility Theory," IEW - Working Papers 231, Institute for Empirical Research in Economics - University of Zurich.
    25. Starmer, Chris & Sugden, Robert, 1991. "Does the Random-Lottery Incentive System Elicit True Preferences? An Experimental Investigation," American Economic Review, American Economic Association, vol. 81(4), pages 971-978, September.
    26. Starmer, Chris & Sugden, Robert, 1989. "Probability and Juxtaposition Effects: An Experimental Investigation of the Common Ratio Effect," Journal of Risk and Uncertainty, Springer, vol. 2(2), pages 159-178, June.
    27. Conlisk, John, 1989. "Three Variants on the Allais Example," American Economic Review, American Economic Association, vol. 79(3), pages 392-407, June.
    28. Faruk Gul & Wolfgang Pesendorfer, 2006. "Random Expected Utility," Econometrica, Econometric Society, vol. 74(1), pages 121-146, January.
    29. Pavlo Blavatskyy, 2007. "Stochastic expected utility theory," Journal of Risk and Uncertainty, Springer, vol. 34(3), pages 259-286, June.
    30. Frederick Mosteller & Philip Nogee, 1951. "An Experimental Measurement of Utility," Journal of Political Economy, University of Chicago Press, vol. 59(5), pages 371-371.
    31. Blavatskyy, Pavlo, 2013. "Which decision theory?," Economics Letters, Elsevier, vol. 120(1), pages 40-44.
    32. Arthur Lewbel & Yingying Dong & Thomas Tao Yang, 2012. "Viewpoint: Comparing features of convenient estimators for binary choice models with endogenous regressors," Canadian Journal of Economics, Canadian Economics Association, vol. 45(3), pages 809-829, August.
    33. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    34. Wilcox, Nathaniel T, 1993. "Lottery Choice: Incentives, Complexity and Decision Time," Economic Journal, Royal Economic Society, vol. 103(421), pages 1397-1417, November.
    35. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    36. Camerer, Colin F, 1989. "An Experimental Test of Several Generalized Utility Theories," Journal of Risk and Uncertainty, Springer, vol. 2(1), pages 61-104, April.
    37. Pavlo Blavatskyy, 2014. "Stronger utility," Theory and Decision, Springer, vol. 76(2), pages 265-286, February.
    38. Ballinger, T Parker & Wilcox, Nathaniel T, 1997. "Decisions, Error and Heterogeneity," Economic Journal, Royal Economic Society, vol. 107(443), pages 1090-1105, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandr Alekseev, 2022. "Give me a challenge or give me a raise," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 170-202, February.
    2. Yves Breitmoser, 2021. "An axiomatic foundation of conditional logit," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(1), pages 245-261, July.
    3. Nathaniel T. Wilcox, 2023. "Unusual Estimates of Probability Weighting Functions," Research in Experimental Economics, in: Models of Risk Preferences: Descriptive and Normative Challenges, volume 22, pages 69-106, Emerald Group Publishing Limited.
    4. Kechagia, Varvara & Drichoutis, Andreas C., 2016. "The effect of olfactory sensory cues on economic decision making," MPRA Paper 75293, University Library of Munich, Germany.
    5. Drichoutis, Andreas C. & Nayga, Rodolfo M., 2022. "Game form recognition in preference elicitation, cognitive abilities, and cognitive load," Journal of Economic Behavior & Organization, Elsevier, vol. 193(C), pages 49-65.
    6. Breitmoser, Yves & Vorjohann, Pauline, 2022. "Fairness-based Altruism," Center for Mathematical Economics Working Papers 666, Center for Mathematical Economics, Bielefeld University.
    7. Breitmoser, Yves & Vorjohann, Pauline, 2018. "Welfare-Based Altruism," Rationality and Competition Discussion Paper Series 89, CRC TRR 190 Rationality and Competition.
    8. Breitmoser, Yves, 2018. "The Axiomatic Foundation of Logit," Rationality and Competition Discussion Paper Series 78, CRC TRR 190 Rationality and Competition.
    9. Kechagia, Varvara & Drichoutis, Andreas C., 2017. "The effect of olfactory sensory cues on willingness to pay and choice under risk," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 70(C), pages 33-46.
    10. Holden, Stein T. & Tilahun, Mesfin, 2019. "How related are risk preferences and time preferences?," CLTS Working Papers 4/19, Norwegian University of Life Sciences, Centre for Land Tenure Studies, revised 16 Oct 2019.
    11. Holden , Stein T. & Tilahun , Mesfin, 2019. "The Devil is in the Details: Risk Preferences, Choice List Design, and Measurement Error," CLTS Working Papers 3/19, Norwegian University of Life Sciences, Centre for Land Tenure Studies, revised 16 Oct 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathaniel T. Wilcox, 2023. "Unusual Estimates of Probability Weighting Functions," Research in Experimental Economics, in: Models of Risk Preferences: Descriptive and Normative Challenges, volume 22, pages 69-106, Emerald Group Publishing Limited.
    2. Wilcox, Nathaniel T., 2011. "'Stochastically more risk averse:' A contextual theory of stochastic discrete choice under risk," Journal of Econometrics, Elsevier, vol. 162(1), pages 89-104, May.
    3. Pavlo Blavatskyy, 2014. "Stronger utility," Theory and Decision, Springer, vol. 76(2), pages 265-286, February.
    4. Michael H. Birnbaum & Ulrich Schmidt & Miriam D. Schneider, 2017. "Testing independence conditions in the presence of errors and splitting effects," Journal of Risk and Uncertainty, Springer, vol. 54(1), pages 61-85, February.
    5. Blavatskyy, Pavlo, 2015. "Behavior in the centipede game: A decision-theoretical perspective," Economics Letters, Elsevier, vol. 133(C), pages 117-122.
    6. Glenn W. Harrison & J. Todd Swarthout, 2016. "Cumulative Prospect Theory in the Laboratory: A Reconsideration," Experimental Economics Center Working Paper Series 2016-04, Experimental Economics Center, Andrew Young School of Policy Studies, Georgia State University.
    7. Pavlo Blavatskyy, 2007. "Stochastic expected utility theory," Journal of Risk and Uncertainty, Springer, vol. 34(3), pages 259-286, June.
    8. Liu Shi & Jianying Qiu & Jiangyan Li & Frank Bohn, 2024. "Consciously stochastic in preference reversals," Journal of Risk and Uncertainty, Springer, vol. 68(3), pages 255-297, June.
    9. Blavatskyy, Pavlo, 2018. "Fechner’s strong utility model for choice among n>2 alternatives: Risky lotteries, Savage acts, and intertemporal payoffs," Journal of Mathematical Economics, Elsevier, vol. 79(C), pages 75-82.
    10. Pavlo Blavatskyy, 2021. "Probabilistic independence axiom," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 46(1), pages 21-34, March.
    11. Pavlo R. Blavatskyy, 2020. "Dual choice axiom and probabilistic choice," Journal of Risk and Uncertainty, Springer, vol. 61(1), pages 25-41, August.
    12. Andreas C Drichoutis & Jayson L Lusk, 2014. "Judging Statistical Models of Individual Decision Making under Risk Using In- and Out-of-Sample Criteria," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-13, July.
    13. Blavatskyy, Pavlo R., 2008. "Stochastic utility theorem," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1049-1056, December.
    14. Pavlo Blavatskyy, 2018. "A second-generation disappointment aversion theory of decision making under risk," Theory and Decision, Springer, vol. 84(1), pages 29-60, January.
    15. John Hey & Andrea Morone & Ulrich Schmidt, 2009. "Noise and bias in eliciting preferences," Journal of Risk and Uncertainty, Springer, vol. 39(3), pages 213-235, December.
    16. Pavlo R. Blavatskyy, 2011. "A Model of Probabilistic Choice Satisfying First-Order Stochastic Dominance," Management Science, INFORMS, vol. 57(3), pages 542-548, March.
    17. Pavlo Blavatskyy, 2010. "Reverse common ratio effect," Journal of Risk and Uncertainty, Springer, vol. 40(3), pages 219-241, June.
    18. Nathaniel T. Wilcox, 2024. "Conditional independence in a binary choice experiment," Journal of Risk and Uncertainty, Springer, vol. 68(3), pages 205-225, June.
    19. Aurora García-Gallego & Nikolaos Georgantzís & Daniel Navarro-Martínez & Gerardo Sabater-Grande, 2011. "The stochastic component in choice and regression to the mean," Theory and Decision, Springer, vol. 71(2), pages 251-267, August.
    20. Aleksandr Alekseev, 2022. "Give me a challenge or give me a raise," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 170-202, February.

    More about this item

    Keywords

    risk; discrete choice; probabilistic choice; heteroscedasticity; prediction;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chu:wpaper:15-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Megan Luetje (email available below). General contact details of provider: https://edirc.repec.org/data/esichus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.