Jackknife Lagrange multiplier test with many weak instruments
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012.
"Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments,"
Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
- Chao & Swanson & Hausman & Newey & Woutersen, 2010. "Asymptotic Distribution of JIVE in a Heteroskedastic IV Regression with Many Instruments," Economics Working Paper Archive 567, The Johns Hopkins University,Department of Economics.
- Norman R. Swanson & John C. Chao & Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen, 2011. "Asymptotic Distribution of JIVE in a Heteroskedastic IV Regression with Many Instruments," Departmental Working Papers 201110, Rutgers University, Department of Economics.
- Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
- Jiahui Wang & Eric Zivot, 1998.
"Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments,"
Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
- Jiahui Wang & Eric Zivot, 1996. "Inference on a Structural Parameter in Instrumental Variables Regression with Weak Instruments," Econometrics 9610005, University Library of Munich, Germany.
- Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
- Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012.
"Instrumental variable estimation with heteroskedasticity and many instruments,"
Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
- Jerry Hausman & Whitney K. Newey & Tiemen M. Woutersen & John Chao & Norman Swanson, 2007. "Instrumental variable estimation with heteroskedasticity and many instruments," CeMMAP working papers CWP22/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Norman R. Swanson & John C. Chao & Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen, 2011. "Instrumental Variable Estimation with Heteroskedasticity and Many Instruments," Departmental Working Papers 201111, Rutgers University, Department of Economics.
- Hausman & Newey & Woutersen & Chao & Swanson, 2009. "Instrumental Variable Estimation with Heteroskedasticity and Many Instruments," Economics Working Paper Archive 566, The Johns Hopkins University,Department of Economics.
- Frank Kleibergen, 2005.
"Testing Parameters in GMM Without Assuming that They Are Identified,"
Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
- Frank Kleibergen, 2001. "Testing Parameters in GMM without Assuming that they are identified," Tinbergen Institute Discussion Papers 01-067/4, Tinbergen Institute.
- Frank Kleibergen, 2002.
"Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression,"
Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
- Frank Kleibergen, 2000. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Tinbergen Institute Discussion Papers 00-055/4, Tinbergen Institute.
- Angrist, J D & Imbens, G W & Krueger, A B, 1999.
"Jackknife Instrumental Variables Estimation,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
- Joshua D. Angrist & Guido W. Imbens & Alan Krueger, 1995. "Jackknife Instrumental Variables Estimation," NBER Technical Working Papers 0172, National Bureau of Economic Research, Inc.
- Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
- Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008.
"Estimation With Many Instrumental Variables,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
- Christian Hansen & Jerry Hausman & Whitney K. Newey, 2006. "Estimation with many instrumental variables," CeMMAP working papers CWP19/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
- Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
- Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
- Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
- Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
- Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Antoine, Bertille & Lavergne, Pascal, 2023.
"Identification-robust nonparametric inference in a linear IV model,"
Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
- Bertille Antoine & Pascal Lavergne, 2019. "Identification-Robust Nonparametric Inference in a Linear IV Model," Discussion Papers dp19-02, Department of Economics, Simon Fraser University.
- Antoine Bertille & Pascal Lavergne, 2023. "Identification-Robust Nonparametric Inference in a Linear IV Model," Post-Print hal-04141433, HAL.
- Bertille Antoine & Pascal Lavergne, 2021. "Identifcation-Robust Nonparametric Inference in a Linear IV Model," Discussion Papers dp21-12, Department of Economics, Simon Fraser University.
- Antoine, Bertille & Lavergne, Pascal, 2019. "Identification-Robust Nonparametric Inference in a Linear IV Model," TSE Working Papers 19-1004, Toulouse School of Economics (TSE), revised May 2021.
- Keisuke Hirano & Jack R. Porter, 2015. "Location Properties of Point Estimators in Linear Instrumental Variables and Related Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 720-733, December.
- Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
- Crudu, Federico & Mellace, Giovanni & Sándor, Zsolt, 2021.
"Inference In Instrumental Variable Models With Heteroskedasticity And Many Instruments,"
Econometric Theory, Cambridge University Press, vol. 37(2), pages 281-310, April.
- Federico Crudu & Giovanni Mellace & Zsolt Sandor, 2017. "Inference in instrumental variables models with heteroskedasticity and many instruments," Department of Economics University of Siena 761, Department of Economics, University of Siena.
- Federico Crudu & Giovanni Mellace & Zsolt Sándor, 2020. "Inference in instrumental variables models with heteroskedasticity and many instruments," Department of Economics University of Siena 821, Department of Economics, University of Siena.
- Johannes W. Ligtenberg, 2023. "Inference in IV models with clustered dependence, many instruments and weak identification," Papers 2306.08559, arXiv.org, revised Mar 2024.
- Manu Navjeevan, 2023. "An Identification and Dimensionality Robust Test for Instrumental Variables Models," Papers 2311.14892, arXiv.org.
- Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
- Jean-Thomas Bernard & Ba Chu & Lynda Khalaf & Marcel Voia, 2019.
"Non-Standard Confidence Sets for Ratios and Tipping Points with Applications to Dynamic Panel Data,"
Annals of Economics and Statistics, GENES, issue 134, pages 79-108.
- Jean-Thomas Bernard & Ba Chu & Lynda Khalaf & Marcel-Cristian Voia, 2017. "Non-standard Confidence Sets for Ratios and Tipping Points with Applications to Dynamic Panel Data," Carleton Economic Papers 17-05, Carleton University, Department of Economics.
- Jean Thomas Bernard & Ba Chu & Lynda Khalaf & Marcel Voia, 2019. "Non-Standard Confidence Sets for Ratios and Tipping Points with Applications to Dynamic Panel Data," Post-Print hal-03549991, HAL.
- Isaiah Andrews & Timothy B. Armstrong, 2017.
"Unbiased instrumental variables estimation under known first‐stage sign,"
Quantitative Economics, Econometric Society, vol. 8(2), pages 479-503, July.
- Isaiah Andrews & Timothy B. Armstrong, 2015. "Unbiased Instrumental Variables Estimation under Known First-Stage Sign," Cowles Foundation Discussion Papers 1984R5, Cowles Foundation for Research in Economics, Yale University, revised Nov 2016.
- Isaiah Andrews & Timothy B. Armstrong, 2015. "Unbiased Instrumental Variables Estimation under Known First-Stage Sign," Cowles Foundation Discussion Papers 1984R3, Cowles Foundation for Research in Economics, Yale University, revised Oct 2015.
- Isaiah Andrews & Timothy B. Armstrong, 2015. "Unbiased Instrumental Variables Estimation under Known First-Stage Sign," Cowles Foundation Discussion Papers 1984R2, Cowles Foundation for Research in Economics, Yale University, revised Sep 2015.
- Isaiah Andrews & Timothy B. Armstrong, 2015. "Unbiased Instrumental Variables Estimation under Known First-Stage Sign," Cowles Foundation Discussion Papers 1984R4, Cowles Foundation for Research in Economics, Yale University, revised Apr 2016.
- Isaiah Andrews & Timothy B. Armstrong, 2015. "Unbiased Instrumental Variables Estimation under Known First-Stage Sign," Cowles Foundation Discussion Papers 1984R, Cowles Foundation for Research in Economics, Yale University, revised Mar 2015.
- Isaiah Andrews & Timothy B. Armstrong, 2015. "Unbiased Instrumental Variables Estimation under Known First-Stage Sign," Cowles Foundation Discussion Papers 1984, Cowles Foundation for Research in Economics, Yale University.
- Bertille Antoine & Pascal Lavergne, 2020. "Identification-Robust Nonparametric Interference in a Linear IV Model," Discussion Papers dp20-03, Department of Economics, Simon Fraser University.
- Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
- Khalaf, Lynda & Urga, Giovanni, 2014. "Identification robust inference in cointegrating regressions," Journal of Econometrics, Elsevier, vol. 182(2), pages 385-396.
More about this item
Keywords
many instruments; weak instruments; Lagrange multiplier test; jackknife;All these keywords.
JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-01-18 (Econometrics)
- NEP-ORE-2021-01-18 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:613. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.