IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt86r4p6sc.html
   My bibliography  Save this paper

Reducing Ship Turn-Around Time Using Double-Cycling

Author

Listed:
  • Goodchild, A. V.
  • Daganzo, C. F.

Abstract

Double cycling improves efficiency by unloading and loading a ship simultaneously; using wasted crane moves to transport containers. This paper demonstrates that double cycling can reduce ship turn-around time through this efficiency improvement. The paper describes the nature of the double cycling problem and, for a given loading-plan, quantifies the benefits using a greedy algorithm. The relationship between the benefits of double cycling, and the problem parameters is analyzed using simple formulas and a simulation program. This paper demonstrates that double cycling can create significant efficiency gains, and should benefit any party interested in improving port operations, and reducing the cost of container shipping.

Suggested Citation

  • Goodchild, A. V. & Daganzo, C. F., 2004. "Reducing Ship Turn-Around Time Using Double-Cycling," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt86r4p6sc, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt86r4p6sc
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/86r4p6sc.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2003. "Berth allocation with service priority," Transportation Research Part B: Methodological, Elsevier, vol. 37(5), pages 437-457, June.
    2. Kim, Kap Hwan & Kim, Hong Bae, 2002. "The optimal sizing of the storage space and handling facilities for import containers," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 821-835, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    2. Đelović Deda, 2024. "A Regression Model of Dry Bulk Carriers’ Loading Time," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 15(1), pages 49-60, January.
    3. Dusan Ku & Tiru S. Arthanari, 2016. "On double cycling for container port productivity improvement," Annals of Operations Research, Springer, vol. 243(1), pages 55-70, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    2. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    3. Ursavas, Evrim & Zhu, Stuart X., 2016. "Optimal policies for the berth allocation problem under stochastic nature," European Journal of Operational Research, Elsevier, vol. 255(2), pages 380-387.
    4. Mao, Anjia & Yu, Tiantian & Ding, Zhaohao & Fang, Sidun & Guo, Jinran & Sheng, Qianqian, 2022. "Optimal scheduling for seaport integrated energy system considering flexible berth allocation," Applied Energy, Elsevier, vol. 308(C).
    5. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    6. Goodchild, Anne V. & Daganzo, Carlos F., 2005. "Crane Double Cycling in Container Ports: Affect on Ship Dwell Time," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9qp7p7jq, Institute of Transportation Studies, UC Berkeley.
    7. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    8. Martin Alcalde, Enrique & Kim, Kap Hwan & Marchán, Sergi Saurí, 2015. "Optimal space for storage yard considering yard inventory forecasts and terminal performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 101-128.
    9. J Blazewicz & T C E Cheng & M Machowiak & C Oguz, 2011. "Berth and quay crane allocation: a moldable task scheduling model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1189-1197, July.
    10. Fernández, Elena & Munoz-Marquez, Manuel, 2022. "New formulations and solutions for the strategic berth template problem," European Journal of Operational Research, Elsevier, vol. 298(1), pages 99-117.
    11. Elio Canestrelli & Marco Corazza & Giuseppe Nadai & Raffaele Pesenti, 2017. "Managing the Ship Movements in the Port of Venice," Networks and Spatial Economics, Springer, vol. 17(3), pages 861-887, September.
    12. Youn Ju Woo & Jang-Ho Song & Kap Hwan Kim, 2016. "Pricing storage of outbound containers in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 644-668, December.
    13. Tao, Yi & Lee, Chung-Yee, 2015. "Joint planning of berth and yard allocation in transshipment terminals using multi-cluster stacking strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 34-50.
    14. Wang, Chong & Liu, Kaiyuan & Zhang, Canrong & Miao, Lixin, 2024. "Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    15. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    16. Chen, Lu & Bostel, Nathalie & Dejax, Pierre & Cai, Jianguo & Xi, Lifeng, 2007. "A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal," European Journal of Operational Research, Elsevier, vol. 181(1), pages 40-58, August.
    17. Ya Xu & Qiushuang Chen & Xiongwen Quan, 2012. "Robust berth scheduling with uncertain vessel delay and handling time," Annals of Operations Research, Springer, vol. 192(1), pages 123-140, January.
    18. Anne V. Goodchild & Carlos F. Daganzo, 2006. "Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations," Transportation Science, INFORMS, vol. 40(4), pages 473-483, November.
    19. Chen, Xiaoming & Zhou, Xuesong & List, George F., 2011. "Using time-varying tolls to optimize truck arrivals at ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 965-982.
    20. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "A note on “Berth allocation considering fuel consumption and vessel emissions”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 48-54.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt86r4p6sc. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.