IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt7z69v4wp.html
   My bibliography  Save this paper

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report

Author

Listed:
  • Lipman, Tim
  • Shah, Nihar

Abstract

This report documents the research efforts of a task order under a research technical agreement between the California Department of Transportation (Caltrans) and the University of California, Berkeley (UC Berkeley). The focus of this research is to understand the scientific and technical aspects of the potential use of ammonia and other related carbon-free energy carriers for hydrogen fuel cell applications. Caltrans has a range of potential applications for fuel cell technology, including various field operations and for providing emergency backup power, power “demand response” flexibility, and power “peak shaving” for its facilities. Ammonia is also a potential onboard hydrogen storage medium for vehicles, but we do not explicitly investigate that here. The interest in hydrogen and fuel cell technologies at Caltrans and other California government agencies is being driven by a confluence of policy-related events the emergence of new and improved hydrogen and fuel cell technologies. The specific policy drivers for hydrogen and fuel cells include the California Hydrogen Highway Network Initiative (Executive Order S-07-04), a statewide greenhouse gas (GHG) emission reduction effort (AB 32 and the AB 1493 “Pavley Law”), and the State’s Zero-Emission Vehicle (ZEV) mandate. Also important are various drivers related to the use of electrical power in the wake of California’s failed electricity sector deregulation effort, and the continued pressures of meeting the demands of growth in California’s electricity needs. This research effort consisted of three primary tasks: 1) An extensive scientific and technical literature review for the use of ammonia and related compounds as a fuel/energy carrier, especially for stationary hydrogen fuel cell applications; 2) An assessment of the current state of technical performance and economics of existing commercial and pre-commercial technologies for ammonia supply for fuel cell applications; and 3) A suggested demonstration plan for a physical demonstration of an ammonia/hydrogen/fuel cell system in the context of Caltrans operations.

Suggested Citation

  • Lipman, Tim & Shah, Nihar, 2007. "Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7z69v4wp, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt7z69v4wp
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/7z69v4wp.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tanner, Dylan, 1995. "Ocean thermal energy conversion: Current overview and future outlook," Renewable Energy, Elsevier, vol. 6(3), pages 367-373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Chongzheng & Fan, Xin & Li, Yuxing & Han, Hui & Zhu, Jianlu & Liu, Liang & Geng, Xiaoyi, 2022. "Research on the offshore adaptability of new offshore ammonia-hydrogen coupling storage and transportation technology," Renewable Energy, Elsevier, vol. 201(P1), pages 700-711.
    2. Schrotenboer, Albert H. & Veenstra, Arjen A.T. & uit het Broek, Michiel A.J. & Ursavas, Evrim, 2022. "A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Deming & Deng, Zilong & Zhang, Chengbin, 2024. "Thermodynamic process control of compression-assisted absorption refrigeration using ocean thermal energy," Renewable Energy, Elsevier, vol. 222(C).
    2. Faizal, Mohammed & Ahmed, M. Rafiuddin, 2013. "Experimental studies on a closed cycle demonstration OTEC plant working on small temperature difference," Renewable Energy, Elsevier, vol. 51(C), pages 234-240.
    3. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
    4. Liu, Weimin & Xu, Xiaojian & Chen, Fengyun & Liu, Yanjun & Li, Shizhen & Liu, Lei & Chen, Yun, 2020. "A review of research on the closed thermodynamic cycles of ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
    6. Jung, Jung-Yeul & Lee, Ho Saeng & Kim, Hyeon-Ju & Yoo, Yungpil & Choi, Woo-Young & Kwak, Ho-Young, 2016. "Thermoeconomic analysis of an ocean thermal energy conversion plant," Renewable Energy, Elsevier, vol. 86(C), pages 1086-1094.
    7. Devis-Morales, Andrea & Montoya-Sánchez, Raúl A. & Osorio, Andrés F. & Otero-Díaz, Luis J., 2014. "Ocean thermal energy resources in Colombia," Renewable Energy, Elsevier, vol. 66(C), pages 759-769.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt7z69v4wp. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.