IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt7w6232wq.html
   My bibliography  Save this paper

Improving City Mobility through Gridlock Control: an Approach and Some Ideas

Author

Listed:
  • Daganzo, Carlos F.

Abstract

This paper examines the effect of gridlock on urban mobility. It defines gridlock and shows how it can be modeled, monitored and controlled with parsimonious models that do not rely on detailed forecasts. The proposed approach to gridlock management should be most effective when based on real-time observation of relevant spatially aggregated measures of traffic performance. This is discussed in detail. The ideas in this paper suggest numerous avenues for research at the empirical and theoretical levels. An appendix summarizes some of these.

Suggested Citation

  • Daganzo, Carlos F., 2005. "Improving City Mobility through Gridlock Control: an Approach and Some Ideas," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7w6232wq, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt7w6232wq
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/7w6232wq.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lago, Alejandro, 2003. "Spatial Models of Morning Commute Consistent with Realistic Traffic Behavior," University of California Transportation Center, Working Papers qt4nd315bv, University of California Transportation Center.
    2. Atef Ghobrial & Carlos F. Daganzo & Tarif Kazimi, 1982. "Baggage Claim Area Congestion at Airports: An Empirical Model of Mechanized Claim Device Performance," Transportation Science, INFORMS, vol. 16(2), pages 246-260, May.
    3. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pandey, Ayush & Lehe, Lewis J. & Gayah, Vikash V., 2024. "Local stability of traffic equilibria in an isotropic network," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    2. Anupriya, & Graham, Daniel J. & Bansal, Prateek & Hörcher, Daniel & Anderson, Richard, 2023. "Optimal congestion control strategies for near-capacity urban metros: Informing intervention via fundamental diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Daganzo, Carlos F & Lehe, Lewis J, 2014. "Distance-dependent Congestion Pricing for Downtown Zones," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9vz1b9rs, Institute of Transportation Studies, UC Berkeley.
    4. Eric J. Gonzales & Nikolas Geroliminis & Michael J. Cassidy & Carlos F. Daganzo, 2010. "On the allocation of city space to multiple transport modes," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(8), pages 643-656, September.
    5. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    6. Stamos, Iraklis & Salanova Grau, Josep Maria & Mitsakis, Evangelos, 2013. "Μακροσκοπικά Θεμελιώδη Διαγράμματα: Ευρήματα Μέσω Προσομοίωσης Για Το Οδικό Δίκτυο Της Θεσσαλονίκης [Macroscopic fundamental diagrams: Simulation based findings from the road network of Thessalonik," MPRA Paper 61538, University Library of Munich, Germany.
    7. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    8. Anupriya, & Bansal, Prateek & Graham, Daniel J., 2023. "Congestion in cities: Can road capacity expansions provide a solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    9. Daganzo, Carlos F & Geroliminis, Nikolas, 2008. "An analytical approximation for the macropscopic fundamental diagram of urban traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4cb8h3jm, Institute of Transportation Studies, UC Berkeley.
    10. Daganzo, Carlos F. & Lehe, Lewis J., 2015. "Distance-dependent congestion pricing for downtown zones," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 89-99.
    11. Lehe, Lewis J. & Pandey, Ayush, 2024. "A bathtub model of transit congestion," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    12. Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2010. "Macroscopic Relations of Urban Traffic Variables: An Analysis of Instability," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7qd590bv, Institute of Transportation Studies, UC Berkeley.
    13. José Gerardo Carrillo-González & Guillermo López-Maldonado & Juan Lopez-Sauceda & Francisco Perez-Martinez, 2023. "Method for Selecting the Vehicles That Can Enter a Street Network to Maintain the Speed on Links above a Speed Threshold," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    14. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    15. Gayah, Vikash V. & Daganzo, Carlos F., 2010. "Exploring the Effect of Turning Maneuvers and Route Choice ona Simple Network," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6kg0d8ds, Institute of Transportation Studies, UC Berkeley.
    16. Jingqiu Guo & Xinyao Chen & Yuqi Pang & Yibing Wang & Pengjun Zheng, 2019. "Bottlenecks, Shockwave, and Off-Ramp Blockage on Freeways," Sustainability, MDPI, vol. 11(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    2. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    3. Coifman, Benjamin A. & Mallika, Ramachandran, 2007. "Distributed surveillance on freeways emphasizing incident detection and verification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 750-767, October.
    4. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    5. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    7. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    8. Huang, Edward & Mital, Pratik & Goetschalckx, Marc & Wu, Kan, 2016. "Optimal assignment of airport baggage unloading zones to outgoing flights," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 110-122.
    9. Jin, Wen-Long, 2010. "Continuous kinematic wave models of merging traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1084-1103, September.
    10. Daganzo, Carlos F., 2006. "In traffic flow, cellular automata = kinematic waves," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 396-403, June.
    11. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    12. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    13. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    14. Daganzo, Carlos F. & Laval, Jorge A., 2005. "Moving bottlenecks: A numerical method that converges in flows," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 855-863, November.
    15. Armbruster, D. & de Beer, C. & Freitag, M. & Jagalski, T. & Ringhofer, C., 2006. "Autonomous control of production networks using a pheromone approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 104-114.
    16. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    17. Martínez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.
    18. Mads Paulsen & Thomas Kjær Rasmussen & Otto Anker Nielsen, 2022. "Including Right-of-Way in a Joint Large-Scale Agent-Based Dynamic Traffic Assignment Model for Cars and Bicycles," Networks and Spatial Economics, Springer, vol. 22(4), pages 915-957, December.
    19. Ruru Xing & Yihan Zhang & Xiaoyu Cai & Jupeng Lu & Bo Peng & Tao Yang, 2023. "Vehicle-Trajectory Prediction Method for an Extra-Long Tunnel Based on Section Traffic Data," Sustainability, MDPI, vol. 15(8), pages 1-30, April.
    20. Jin, Wen-Long, 2017. "Kinematic wave models of lane-drop bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 507-522.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt7w6232wq. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.