IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt7w6232wq.html
   My bibliography  Save this paper

Improving City Mobility through Gridlock Control: an Approach and Some Ideas

Author

Listed:
  • Daganzo, Carlos F.

Abstract

This paper examines the effect of gridlock on urban mobility. It defines gridlock and shows how it can be modeled, monitored and controlled with parsimonious models that do not rely on detailed forecasts. The proposed approach to gridlock management should be most effective when based on real-time observation of relevant spatially aggregated measures of traffic performance. This is discussed in detail. The ideas in this paper suggest numerous avenues for research at the empirical and theoretical levels. An appendix summarizes some of these.

Suggested Citation

  • Daganzo, Carlos F., 2005. "Improving City Mobility through Gridlock Control: an Approach and Some Ideas," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7w6232wq, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt7w6232wq
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/7w6232wq.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lago, Alejandro, 2003. "Spatial Models of Morning Commute Consistent with Realistic Traffic Behavior," University of California Transportation Center, Working Papers qt4nd315bv, University of California Transportation Center.
    2. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    3. Atef Ghobrial & Carlos F. Daganzo & Tarif Kazimi, 1982. "Baggage Claim Area Congestion at Airports: An Empirical Model of Mechanized Claim Device Performance," Transportation Science, INFORMS, vol. 16(2), pages 246-260, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lehe, Lewis J. & Pandey, Ayush, 2024. "A bathtub model of transit congestion," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    2. Daganzo, Carlos F & Lehe, Lewis J, 2014. "Distance-dependent Congestion Pricing for Downtown Zones," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9vz1b9rs, Institute of Transportation Studies, UC Berkeley.
    3. Eric J. Gonzales & Nikolas Geroliminis & Michael J. Cassidy & Carlos F. Daganzo, 2010. "On the allocation of city space to multiple transport modes," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(8), pages 643-656, September.
    4. Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2010. "Macroscopic Relations of Urban Traffic Variables: An Analysis of Instability," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7qd590bv, Institute of Transportation Studies, UC Berkeley.
    5. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    6. José Gerardo Carrillo-González & Guillermo López-Maldonado & Juan Lopez-Sauceda & Francisco Perez-Martinez, 2023. "Method for Selecting the Vehicles That Can Enter a Street Network to Maintain the Speed on Links above a Speed Threshold," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    7. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    8. Stamos, Iraklis & Salanova Grau, Josep Maria & Mitsakis, Evangelos, 2013. "Μακροσκοπικά Θεμελιώδη Διαγράμματα: Ευρήματα Μέσω Προσομοίωσης Για Το Οδικό Δίκτυο Της Θεσσαλονίκης [Macroscopic fundamental diagrams: Simulation based findings from the road network of Thessalonik," MPRA Paper 61538, University Library of Munich, Germany.
    9. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    10. Pandey, Ayush & Lehe, Lewis J. & Gayah, Vikash V., 2024. "Local stability of traffic equilibria in an isotropic network," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    11. Anupriya, & Graham, Daniel J. & Bansal, Prateek & Hörcher, Daniel & Anderson, Richard, 2023. "Optimal congestion control strategies for near-capacity urban metros: Informing intervention via fundamental diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    12. Gayah, Vikash V. & Daganzo, Carlos F., 2010. "Exploring the Effect of Turning Maneuvers and Route Choice ona Simple Network," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6kg0d8ds, Institute of Transportation Studies, UC Berkeley.
    13. Anupriya, & Bansal, Prateek & Graham, Daniel J., 2023. "Congestion in cities: Can road capacity expansions provide a solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    14. Daganzo, Carlos F & Geroliminis, Nikolas, 2008. "An analytical approximation for the macropscopic fundamental diagram of urban traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4cb8h3jm, Institute of Transportation Studies, UC Berkeley.
    15. Jingqiu Guo & Xinyao Chen & Yuqi Pang & Yibing Wang & Pengjun Zheng, 2019. "Bottlenecks, Shockwave, and Off-Ramp Blockage on Freeways," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    16. Daganzo, Carlos F. & Lehe, Lewis J., 2015. "Distance-dependent congestion pricing for downtown zones," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 89-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. G. Heydecker & J. D. Addison, 2005. "Analysis of Dynamic Traffic Equilibrium with Departure Time Choice," Transportation Science, INFORMS, vol. 39(1), pages 39-57, February.
    2. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    3. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    4. Coifman, Benjamin A. & Mallika, Ramachandran, 2007. "Distributed surveillance on freeways emphasizing incident detection and verification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 750-767, October.
    5. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    6. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    7. Daganzo, Carlos F., 2011. "On the macroscopic stability of freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 782-788, June.
    8. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Delpiano, Rafael & Laval, Jorge & Coeymans, Juan Enrique & Herrera, Juan Carlos, 2015. "The kinematic wave model with finite decelerations: A social force car-following model approximation," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 182-193.
    10. van Wageningen-Kessels, Femke & Leclercq, Ludovic & Daamen, Winnie & Hoogendoorn, Serge P., 2016. "The Lagrangian coordinate system and what it means for two-dimensional crowd flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 272-285.
    11. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    12. Gonzales, Eric Justin, 2011. "Allocation of Space and the Costs of Multimodal Transport in Cities," University of California Transportation Center, Working Papers qt7s28n4nj, University of California Transportation Center.
    13. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    14. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    15. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    16. Huang, Edward & Mital, Pratik & Goetschalckx, Marc & Wu, Kan, 2016. "Optimal assignment of airport baggage unloading zones to outgoing flights," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 110-122.
    17. Jin, Wen-Long, 2020. "Generalized bathtub model of network trip flows," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 138-157.
    18. Jin, Wen-Long, 2010. "Continuous kinematic wave models of merging traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1084-1103, September.
    19. Zheng, Zuduo & Su, Dongcai, 2016. "Traffic state estimation through compressed sensing and Markov random field," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 525-554.
    20. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt7w6232wq. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.