IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt3z76r7tj.html
   My bibliography  Save this paper

Potential Erroneous Degradation of High Occupancy Vehicle (HOV) Facilities

Author

Listed:
  • Fournier, Nicholas PhD
  • Farid, Yashar Zeinali PhD
  • Patire, Anthony David PhD

Abstract

This document is the final report for Task ID 3710 (65A0759), a project titled “Potential Erroneous Degradation of High Occupancy Vehicle (HOV) Facilities”. This report contains a compilation of three previous technical memorandums titled “Survey of Data-Mining Methods”, “Performance of Methods”, and “Magnitude of HOV Degradation”. HOV lane sensors in Caltrans’ Performance Management System (PeMS), are sometimes misconfigured as general-purpose lanes. In this situation, HOV lane data is mistakenly aggregated with general-purpose lane data and vice versa. The purpose of this project was to understand how widespread this problem might be and the extent to which it impacts performance reporting on the degradation of HOV lanes.

Suggested Citation

  • Fournier, Nicholas PhD & Farid, Yashar Zeinali PhD & Patire, Anthony David PhD, 2021. "Potential Erroneous Degradation of High Occupancy Vehicle (HOV) Facilities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3z76r7tj, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt3z76r7tj
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/3z76r7tj.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Douglas M. Hawkins, 1980. "Critical Values for Identifying Outliers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 95-96, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Durgesh Samariya & Amit Thakkar, 2023. "A Comprehensive Survey of Anomaly Detection Algorithms," Annals of Data Science, Springer, vol. 10(3), pages 829-850, June.
    2. Sisman, S. & Aydinoglu, A.C., 2022. "Improving performance of mass real estate valuation through application of the dataset optimization and Spatially Constrained Multivariate Clustering Analysis," Land Use Policy, Elsevier, vol. 119(C).
    3. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    4. Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
    5. Jizhang Wang & Yun Zhang & Rongrong Gu, 2020. "Research Status and Prospects on Plant Canopy Structure Measurement Using Visual Sensors Based on Three-Dimensional Reconstruction," Agriculture, MDPI, vol. 10(10), pages 1-27, October.
    6. Mehdi Jabbari Nooghabi, 2016. "Estimation of the Lomax Distribution in the Presence of Outliers," Annals of Data Science, Springer, vol. 3(4), pages 385-399, December.
    7. Marc Chataigner & Stephane Crepey & Jiang Pu, 2020. "Nowcasting Networks," Papers 2011.13687, arXiv.org.
    8. St'ephane Cr'epey & Lehdili Noureddine & Nisrine Madhar & Maud Thomas, 2022. "Anomaly Detection on Financial Time Series by Principal Component Analysis and Neural Networks," Papers 2209.11686, arXiv.org, revised Oct 2022.
    9. Nirpeksh Kumar, 2019. "Exact distributions of tests of outliers for exponential samples," Statistical Papers, Springer, vol. 60(6), pages 2031-2061, December.
    10. Stanley Munamato Mbiva & Fabio Mathias Correa, 2024. "Machine Learning to Enhance the Detection of Terrorist Financing and Suspicious Transactions in Migrant Remittances," JRFM, MDPI, vol. 17(5), pages 1-19, April.
    11. Cihangir Koycegiz & Meral Buyukyildiz, 2023. "Investigation of spatiotemporal variability of some precipitation indices in Seyhan Basin, Turkey: monotonic and sub-trend analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2211-2244, March.
    12. Taha Yehia & Ali Wahba & Sondos Mostafa & Omar Mahmoud, 2022. "Suitability of Different Machine Learning Outlier Detection Algorithms to Improve Shale Gas Production Data for Effective Decline Curve Analysis," Energies, MDPI, vol. 15(23), pages 1-25, November.
    13. Damian Przekop, 2020. "Feature Engineering for Anti-Fraud Models Based on Anomaly Detection," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(3), pages 301-316, September.
    14. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    15. Carlo Mari & Cristiano Baldassari, 2021. "Ensemble Methods for Jump-Diffusion Models of Power Prices," Energies, MDPI, vol. 14(8), pages 1-17, April.
    16. Beata Gavurova & Jaroslav Belas & Katarina Zvarikova & Martin Rigelsky & Viera Ivankova, 2021. "The Effect of Education and R&D on Tourism Spending in OECD Countries: An Empirical Study," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 23(58), pages 806-806, August.
    17. Gaucher, Solenne & Klopp, Olga & Robin, Geneviève, 2021. "Outlier detection in networks with missing links," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    18. Andrzej Chmielowiec, 2021. "Algorithm for error-free determination of the variance of all contiguous subsequences and fixed-length contiguous subsequences for a sequence of industrial measurement data," Computational Statistics, Springer, vol. 36(4), pages 2813-2840, December.
    19. Marc Chataigner & Stéphane Crépey & Jiang Pu, 2020. "Nowcasting Networks," Post-Print hal-03910123, HAL.
    20. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.

    More about this item

    Keywords

    Engineering;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt3z76r7tj. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.