IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt2x98k1x2.html
   My bibliography  Save this paper

Clockwise Hysteresis Loops in the MacroscopicFundamental Diagram

Author

Listed:
  • Gayah, Vikash V.
  • Daganzo, Carlos F.

Abstract

A recent study reported that the Macroscopic Fundamental Diagram of a medium size city exhibited a clockwise hysteresis loop on a day in which a major disturbance caused many drivers to switch to unfamiliar routes. This paper shows that clockwise loops are to be expected when there are disturbances, especially if the disturbances cause a significant fraction of the drivers to not change routes adaptively. It is shown that when drivers are not adaptive networks are inherently more unstable as they recover from congestion than as they are loaded. In other words, during recovery congestion tends more strongly toward unevenness because very congested areas clear more slowly than less congested areas. Since it is known that uneven congestion distributions reduce network flows, it follows that lower network flows should arise during recovery, resulting in clockwise loops. Fortunately, in sufficient numbers, drivers that choose routes adaptively to avoid congested areas help to even out congestion during recovery, increasing flow. Thus, clockwise loops are less likely to occur when driver adaptivity is high.

Suggested Citation

  • Gayah, Vikash V. & Daganzo, Carlos F., 2010. "Clockwise Hysteresis Loops in the MacroscopicFundamental Diagram," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2x98k1x2, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt2x98k1x2
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/2x98k1x2.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2010. "Macroscopic Relations of Urban Traffic Variables: An Analysis of Instability," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7qd590bv, Institute of Transportation Studies, UC Berkeley.
    2. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    3. Siamak Ardekani & Robert Herman, 1987. "Urban Network-Wide Traffic Variables and Their Relations," Transportation Science, INFORMS, vol. 21(1), pages 1-16, February.
    4. Olszewski, Piotr & Fan, Henry S. L. & Tan, Yan-Weng, 1995. "Area-wide traffic speed-flow model for the Singapore CBD," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(4), pages 273-281, July.
    5. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    6. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    7. Gayah, Vikash V. & Daganzo, Carlos F., 2010. "Exploring the Effect of Turning Maneuvers and Route Choice ona Simple Network," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6kg0d8ds, Institute of Transportation Studies, UC Berkeley.
    8. Daganzo, Carlos F & Geroliminis, Nikolas, 2008. "An analytical approximation for the macropscopic fundamental diagram of urban traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4cb8h3jm, Institute of Transportation Studies, UC Berkeley.
    9. Amin Mazloumian & Nikolas Geroliminis & Dirk Helbing, "undated". "The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity," Working Papers CCSS-09-009, ETH Zurich, Chair of Systems Design.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gayah, Vikash V. & Daganzo, Carlos F., 2011. "Clockwise hysteresis loops in the Macroscopic Fundamental Diagram: An effect of network instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 643-655, May.
    2. Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2011. "Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 278-288, January.
    3. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    4. Geroliminis, Nikolas & Sun, Jie, 2011. "Hysteresis phenomena of a Macroscopic Fundamental Diagram in freeway networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 966-979, November.
    5. Gayah, Vikash V. & Gao, Xueyu (Shirley) & Nagle, Andrew S., 2014. "On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 255-268.
    6. Daganzo, Carlos F., 2010. "On the Stability of Freeway Traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4vf597r5, Institute of Transportation Studies, UC Berkeley.
    7. Geroliminis, Nikolas & Sun, Jie, 2011. "Properties of a well-defined macroscopic fundamental diagram for urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 605-617, March.
    8. Wada, Kentaro & Satsukawa, Koki & Smith, Mike & Akamatsu, Takashi, 2019. "Network throughput under dynamic user equilibrium: Queue spillback, paradox and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 391-413.
    9. Haddad, Jack & Ramezani, Mohsen & Geroliminis, Nikolas, 2013. "Cooperative traffic control of a mixed network with two urban regions and a freeway," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 17-36.
    10. Amin Mazloumian & Nikolas Geroliminis & Dirk Helbing, "undated". "The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity," Working Papers CCSS-09-009, ETH Zurich, Chair of Systems Design.
    11. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    12. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    13. Leclercq, Ludovic & Geroliminis, Nikolas, 2013. "Estimating MFDs in simple networks with route choice," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 468-484.
    14. Zheng, Nan & Geroliminis, Nikolas, 2013. "On the distribution of urban road space for multimodal congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 326-341.
    15. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    16. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Zhang, Mengping, 2015. "Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 189-217.
    17. Haddad, Jack & Geroliminis, Nikolas, 2012. "On the stability of traffic perimeter control in two-region urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1159-1176.
    18. Daganzo, Carlos F., 2011. "On the macroscopic stability of freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 782-788, June.
    19. Gayah, Vikash V. & Daganzo, Carlos F., 2010. "Exploring the Effect of Turning Maneuvers and Route Choice ona Simple Network," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6kg0d8ds, Institute of Transportation Studies, UC Berkeley.
    20. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt2x98k1x2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.