IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt98x6z26j.html
   My bibliography  Save this paper

Benefits, Challenges, and Opportunities of Different Last-Mile Delivery Strategies

Author

Listed:
  • Jaller, Miguel PhD
  • Pahwa, Anmol PhD
  • Saphores, Jean-Daniel PhD
  • Hyland, Michael PhD

Abstract

As online shopping nears its third decade, it is clear that its impacts on urban goods flow are profound. Increased freight traffic and related negative externalities such as greenhouse gas emissions and local air pollution can impede sustainability goals. In response, e-retailers are exploring innovative distribution strategies to enhance last-mile delivery sustainability and efficiency. They use urban consolidation centers with light-duty vehicles like electric vans and cargo bikes, establish alternative customer pickup points, and deploy crowdsourced delivery networks. Advanced technologies that may streamline deliveries, such as autonomous delivery robots and unmanned aerial vehicles, are being tested. University of California Davis and Irvine researchers have investigated these strategies under economic viability, environmental efficiency, and social equity frameworks. Different modeling approaches were implemented to evaluate last-mile network designs and the potential for decarbonizing delivery fleets by switching to electric vehicles. Key findings suggest that while these innovative strategies offer substantial environmental benefits and reduce operational costs, they also present challenges like higher initial investments and operational hurdles. The study emphasizes the need for ongoing innovation and careful strategy implementation to balance sustainability with urban delivery systems’ economic and service reliability demands.

Suggested Citation

  • Jaller, Miguel PhD & Pahwa, Anmol PhD & Saphores, Jean-Daniel PhD & Hyland, Michael PhD, 2024. "Benefits, Challenges, and Opportunities of Different Last-Mile Delivery Strategies," Institute of Transportation Studies, Working Paper Series qt98x6z26j, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt98x6z26j
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/98x6z26j.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Estrada, Miquel & Roca-Riu, Mireia, 2017. "Stakeholder’s profitability of carrier-led consolidation strategies in urban goods distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 165-188.
    2. Pahwa, Anmol & Jaller, Miguel, 2022. "A cost-based comparative analysis of different last-mile strategies for e-commerce delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    3. Pahwa, Anmol & Jaller, Miguel, 2023. "Assessing last-mile distribution resilience under demand disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    4. Marten, Alex L. & Newbold, Stephen C., 2012. "Estimating the social cost of non-CO2 GHG emissions: Methane and nitrous oxide," Energy Policy, Elsevier, vol. 51(C), pages 957-972.
    5. Isa, Selma Setsumi & Lima, Orlando Fontes & Vidal Vieira, José Geraldo, 2021. "Urban consolidation centers: Impact analysis by stakeholder," Research in Transportation Economics, Elsevier, vol. 90(C).
    6. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    7. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    8. Lemardelé, Clément & Estrada, Miquel & Pagès, Laia & Bachofner, Mónika, 2021. "Potentialities of drones and ground autonomous delivery devices for last-mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaller, Miguel & Pahwa, Anmol, 2023. "Coping with the Rise of E-commerce Generated Home Deliveries through Innovative Last-mile Technologies and Strategies," Institute of Transportation Studies, Working Paper Series qt5t76x0kh, Institute of Transportation Studies, UC Davis.
    2. Pahwa, Anmol & Jaller, Miguel, 2022. "A cost-based comparative analysis of different last-mile strategies for e-commerce delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    3. Pahwa, Anmol & Jaller, Miguel, 2023. "Assessing last-mile distribution resilience under demand disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    4. Kotzab, Herbert & Yumurtacı Hüseyinoğlu, Işık Özge & Şen, Irmak & Mena, Carlos, 2024. "Exploring home delivery service attributes: Sustainability versus delivery expectations during the COVID-19 pandemic," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    5. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    6. Vichitkunakorn, Panupong & Emde, Simon & Masae, Makusee & Glock, Christoph H. & Grosse, Eric H., 2024. "Locating charging stations and routing drones for efficient automated stocktaking," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1129-1145.
    7. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    8. Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
    9. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    10. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    11. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    12. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    13. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    14. repec:dar:wpaper:62383 is not listed on IDEAS
    15. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    16. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    17. Ringsberg, Henrik, 2023. "Sustainable FLM transport based on IPF transport by ferry in coastal rural areas: A case from Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    18. Ana Bricia Galindo-Muro & Riccardo Cespi & Stephany Isabel Vallarta-Serrano, 2023. "Applications of Electric Vehicles in Instant Deliveries," Energies, MDPI, vol. 16(4), pages 1-18, February.
    19. Bahareh Mansouri & Subhasmita Sahu & M. Ali Ülkü, 2023. "Toward Greening City Logistics: A Systematic Review on Corporate Governance and Social Responsibility in Managing Urban Distribution Centers," Logistics, MDPI, vol. 7(1), pages 1-20, March.
    20. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    21. He, Xinyu & He, Fang & Li, Lishuai & Zhang, Lei & Xiao, Gang, 2022. "A route network planning method for urban air delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).

    More about this item

    Keywords

    Engineering; First and last mile; electronic commerce; delivery service; delivery vehicles; electric vehicles; vehicle fleets; sustainable transportation; social equity;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt98x6z26j. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.