IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt2v0853tp.html
   My bibliography  Save this paper

Emerging Technology Zero Emission Vehicle Household Travel and Refueling Behavior

Author

Listed:
  • Tal, Gil
  • Karanam, Vaishnavi Chaitanya
  • Favetti, Matthew P.
  • Sutton, Katrina May
  • Ogunmayin, Jade Motayo
  • Raghavan, Seshadri Srinivasa
  • Nitta, Christopher
  • Chakraborty, Debapriya
  • Davis, Adam
  • Garas, Dahlia

Abstract

Results from this report highlight how alternative fuel vehicles are used based on data collected between 2015 and 2020. Alternative fuel vehicles include plug-in electric vehicles (PEVs), vehicles that are either battery electric vehicles (BEVs) or plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles (FCVs). This category of vehicle technologies is included in the California Air Resources Board’s Zero Emission Vehicle regulations and is referred to as ZEV in this report. We explore the environmental impacts of driving, charging behavior and infrastructure. In households with ZEVs, the data from surveys, loggers, and interviews indicate that those vehicles are being used extensively. This report, which combined the data collected in two consecutive studies between 2015-2020, includes first and second generation PEVs popular in California between 2011-2018. The BEVs include the first-generation, shortrange Nissan Leaf and the long range BEVs such as the Chevrolet Bolt and Tesla Model S. The PHEVs include short range sedans such as the Toyota Prius Plug-in and longer-range vehicles such as the Toyota Prius Prime, Chevrolet Volt and Chrysler Pacifica. The FCVs include the most popular fuel cell vehicle, the Toyota Mirai.

Suggested Citation

  • Tal, Gil & Karanam, Vaishnavi Chaitanya & Favetti, Matthew P. & Sutton, Katrina May & Ogunmayin, Jade Motayo & Raghavan, Seshadri Srinivasa & Nitta, Christopher & Chakraborty, Debapriya & Davis, Adam , 2021. "Emerging Technology Zero Emission Vehicle Household Travel and Refueling Behavior," Institute of Transportation Studies, Working Paper Series qt2v0853tp, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt2v0853tp
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/2v0853tp.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    2. Contestabile, Marcello & Alajaji, Mohammed & Almubarak, Bader, 2017. "Will current electric vehicle policy lead to cost-effective electrification of passenger car transport?," Energy Policy, Elsevier, vol. 110(C), pages 20-30.
    3. Simon C.Y. Wong, 2018. "The State of Governance at State-owned Enterprises," World Bank Publications - Reports 29533, The World Bank Group.
    4. Lloro, Alicia & Brownstone, David, 2018. "Vehicle choice and utilization: Improving estimation with partially observed choices and hybrid pairs," Journal of choice modelling, Elsevier, vol. 28(C), pages 137-152.
    5. Lucas W. Davis, 2019. "How much are electric vehicles driven?," Applied Economics Letters, Taylor & Francis Journals, vol. 26(18), pages 1497-1502, October.
    6. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    7. Plötz, Patrick & Funke, Simon Árpád & Jochem, Patrick, 2018. "The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 331-340.
    8. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    9. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert & Turrentine, Thomas, 2017. "Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 166-182.
    10. Plötz, Patrick & Jakobsson, Niklas & Sprei, Frances, 2017. "On the distribution of individual daily driving distances," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 213-227.
    11. Weiller, Claire, 2011. "Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States," Energy Policy, Elsevier, vol. 39(6), pages 3766-3778, June.
    12. Bailey, Joseph & Axsen, Jonn, 2015. "Anticipating PEV buyers’ acceptance of utility controlled charging," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 29-46.
    13. Davies, Jamie & Kurani, Kenneth S., 2013. "Moving from assumption to observation: Implications for energy and emissions impacts of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 62(C), pages 550-560.
    14. Nicholas, Michael A. & Tal, Gil & Turrentine, Thomas S., 2017. "Advanced Plug-in Electric Vehicle Travel and Charging Behavior Interim Report," Institute of Transportation Studies, Working Paper Series qt9c28789j, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adekunle Mofolasayo, 2023. "Assessing and Managing the Direct and Indirect Emissions from Electric and Fossil-Powered Vehicles," Sustainability, MDPI, vol. 15(2), pages 1-33, January.
    2. James Bushnell & David Rapson, 2022. "The Electric Ceiling: Limits and Costs of Full Electrification," Working Papers 2220, Federal Reserve Bank of Dallas.
    3. Mandev, Ahmet & Plötz, Patrick & Sprei, Frances & Tal, Gil, 2022. "Empirical charging behavior of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    4. Qiu, Yueming Lucy & Wang, Yi David & Iseki, Hiroyuki & Shen, Xingchi & Xing, Bo & Zhang, Huiming, 2022. "Empirical grid impact of in-home electric vehicle charging differs from predictions," Resource and Energy Economics, Elsevier, vol. 67(C).
    5. Hamza Mediouni & Amal Ezzouhri & Zakaria Charouh & Khadija El Harouri & Soumia El Hani & Mounir Ghogho, 2022. "Energy Consumption Prediction and Analysis for Electric Vehicles: A Hybrid Approach," Energies, MDPI, vol. 15(17), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srinivasa Raghavan, Seshadri, 2020. "Behavioral Realism of Plug-In Electric Vehicle Usage: Implications for Emission Benefits, Energy Consumption, and Policies," Institute of Transportation Studies, Working Paper Series qt1rz000pf, Institute of Transportation Studies, UC Davis.
    2. Mandev, Ahmet & Plötz, Patrick & Sprei, Frances & Tal, Gil, 2022. "Empirical charging behavior of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    3. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    4. Haustein, Sonja & Jensen, Anders Fjendbo & Cherchi, Elisabetta, 2021. "Battery electric vehicle adoption in Denmark and Sweden: Recent changes, related factors and policy implications," Energy Policy, Elsevier, vol. 149(C).
    5. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    6. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    7. Jia, Wenjian & Jiang, Zhiqiu & Wang, Qian & Xu, Bin & Xiao, Mei, 2023. "Preferences for zero-emission vehicle attributes: Comparing early adopters with mainstream consumers in California," Transport Policy, Elsevier, vol. 135(C), pages 21-32.
    8. Liang, Jing & Qiu, Yueming (Lucy) & Xing, Bo, 2022. "Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data," Energy Economics, Elsevier, vol. 112(C).
    9. Doluweera, Ganesh & Hahn, Fabian & Bergerson, Joule & Pruckner, Marco, 2020. "A scenario-based study on the impacts of electric vehicles on energy consumption and sustainability in Alberta," Applied Energy, Elsevier, vol. 268(C).
    10. Ledna, Catherine & Muratori, Matteo & Brooker, Aaron & Wood, Eric & Greene, David, 2022. "How to support EV adoption: Tradeoffs between charging infrastructure investments and vehicle subsidies in California," Energy Policy, Elsevier, vol. 165(C).
    11. Ma, Shao-Chao & Xu, Jin-Hua & Fan, Ying, 2019. "Willingness to pay and preferences for alternative incentives to EV purchase subsidies: An empirical study in China," Energy Economics, Elsevier, vol. 81(C), pages 197-215.
    12. Fabio Carlucci & Andrea Cirà & Giuseppe Lanza, 2018. "Hybrid Electric Vehicles: Some Theoretical Considerations on Consumption Behaviour," Sustainability, MDPI, vol. 10(4), pages 1-11, April.
    13. Trencher, Gregory & Taeihagh, Araz & Yarime, Masaru, 2020. "Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan," Energy Policy, Elsevier, vol. 142(C).
    14. Laurent Franckx, 2019. "Working Paper 01-19 - Future evolution of the car stock in Belgium: CASMO, the new satellite of PLANET," Working Papers 1901, Federal Planning Bureau, Belgium.
    15. Rotaris, Lucia & Giansoldati, Marco & Scorrano, Mariangela, 2021. "The slow uptake of electric cars in Italy and Slovenia. Evidence from a stated-preference survey and the role of knowledge and environmental awareness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 1-18.
    16. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    17. Secinaro, Silvana & Calandra, Davide & Lanzalonga, Federico & Ferraris, Alberto, 2022. "Electric vehicles’ consumer behaviours: Mapping the field and providing a research agenda," Journal of Business Research, Elsevier, vol. 150(C), pages 399-416.
    18. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    19. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    20. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).

    More about this item

    Keywords

    Engineering;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt2v0853tp. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.