IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt2345r48k.html
   My bibliography  Save this paper

Strategies to Reduce Congestion and Increase Access to Electric Vehicle Charging Stations at Workplaces

Author

Listed:
  • Sutton, Katrina
  • Hardman, Scott
  • Tal, Gil

Abstract

This paper investigates strategies to increase charging station utilization, reduce congestion, and increase access to chargers at workplaces. Interviews with plug-in electric vehicle (PEV) drivers across California revealed three styles of workplace charging management: authoritative (rules introduced by the employer), collective (rules introduced by employees), and unmanaged (no rules in place). Authoritative charging included digital queuing, time limits with pricing, pricing, and valet charging. Collective management included day restrictions, time restrictions, messaging groups, and spreadsheets with driver information. Charging management strategies can increase accessibility and utilization of stations by reducing congestion, increasing vehicle throughput and discouraging those that do not need to charge from doing so. Workplaces with charging management may need less charging infrastructure to support more PEVs. Interviewees reported positive experiences with the charging management strategies at their workplaces. Charging management strategies appear to be a user-friendly approach to reducing charge point congestion, vehicles overstaying, and increase utilization of workplace charging.

Suggested Citation

  • Sutton, Katrina & Hardman, Scott & Tal, Gil, 2022. "Strategies to Reduce Congestion and Increase Access to Electric Vehicle Charging Stations at Workplaces," Institute of Transportation Studies, Working Paper Series qt2345r48k, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt2345r48k
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/2345r48k.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    2. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
    3. Bonges, Henry A. & Lusk, Anne C., 2016. "Addressing electric vehicle (EV) sales and range anxiety through parking layout, policy and regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 63-73.
    4. Madina, Carlos & Zamora, Inmaculada & Zabala, Eduardo, 2016. "Methodology for assessing electric vehicle charging infrastructure business models," Energy Policy, Elsevier, vol. 89(C), pages 284-293.
    5. Bailey, Joseph & Axsen, Jonn, 2015. "Anticipating PEV buyers’ acceptance of utility controlled charging," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 29-46.
    6. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    2. Helmus, J.R. & Spoelstra, J.C. & Refa, N. & Lees, M. & van den Hoed, R., 2018. "Assessment of public charging infrastructure push and pull rollout strategies: The case of the Netherlands," Energy Policy, Elsevier, vol. 121(C), pages 35-47.
    3. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    4. Anne Christine Lusk & Xin Li & Qiming Liu, 2023. "If the Government Pays for Full Home-Charger Installation, Would Affordable-Housing and Middle-Income Residents Buy Electric Vehicles?," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    5. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    6. Chengxiang Zhuge & Chunfu Shao & Xia Li, 2019. "Empirical Analysis of Parking Behaviour of Conventional and Electric Vehicles for Parking Modelling: A Case Study of Beijing, China," Energies, MDPI, vol. 12(16), pages 1-21, August.
    7. Bhat, Furqan A. & Verma, Ashish, 2024. "Electric two-wheeler adoption in India – A discrete choice analysis of motivators and barriers affecting the potential electric two-wheeler buyers," Transport Policy, Elsevier, vol. 152(C), pages 118-131.
    8. Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.
    9. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    10. LaMonaca, Sarah & Ryan, Lisa, 2022. "The state of play in electric vehicle charging services – A review of infrastructure provision, players, and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Khatua, Apalak & Ranjan Kumar, Rajeev & Kumar De, Supriya, 2023. "Institutional enablers of electric vehicle market: Evidence from 30 countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    12. Pemberton, Simon & Nobajas, Alexandre & Waller, Richard, 2021. "Rapid charging provision, multiplicity and battery electric vehicle (BEV) mobility in the UK," Journal of Transport Geography, Elsevier, vol. 95(C).
    13. Sauter, Verena & Speth, Daniel & Plötz, Patrick & Signer, Tim, 2021. "A charging infrastructure network for battery electric trucks in Europe," Working Papers "Sustainability and Innovation" S02/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    14. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    15. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
    16. Yan Bao & Yu Luo & Weige Zhang & Mei Huang & Le Yi Wang & Jiuchun Jiang, 2018. "A Bi-Level Optimization Approach to Charging Load Regulation of Electric Vehicle Fast Charging Stations Based on a Battery Energy Storage System," Energies, MDPI, vol. 11(1), pages 1-21, January.
    17. Ma, Shao-Chao & Fan, Ying, 2020. "A deployment model of EV charging piles and its impact on EV promotion," Energy Policy, Elsevier, vol. 146(C).
    18. Jonas, Tim & Macht, Gretchen A., 2024. "Analyzing the urban-rural divide: Understanding geographic variations in charging behavior for a user-centered EVSE infrastructure," Journal of Transport Geography, Elsevier, vol. 116(C).
    19. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    20. Bhat, Furqan A. & Tiwari, Gaurav Yash & Verma, Ashish, 2024. "Preferences for public electric vehicle charging infrastructure locations: A discrete choice analysis," Transport Policy, Elsevier, vol. 149(C), pages 177-197.

    More about this item

    Keywords

    Social and Behavioral Sciences; Traffic Congestion; Electric Vehicle Charging; Charging Behavior;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt2345r48k. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.