IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v5y1987i5p329-331.html
   My bibliography  Save this article

Algebraic bounds on standardized sample moments

Author

Listed:
  • Dalén, Jörgen

Abstract

Best possible bounds are given for standardized sample (or finite population) moments and absolute moments of arbitrary order, generalizing those given by Cramer (1945) and Kirby (1974) on sample skewness and kurtosis.

Suggested Citation

  • Dalén, Jörgen, 1987. "Algebraic bounds on standardized sample moments," Statistics & Probability Letters, Elsevier, vol. 5(5), pages 329-331, August.
  • Handle: RePEc:eee:stapro:v:5:y:1987:i:5:p:329-331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(87)90005-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kylie-Anne Richards & Gareth W. Peters & William Dunsmuir, 2012. "Heavy-Tailed Features and Empirical Analysis of the Limit Order Book Volume Profiles in Futures Markets," Papers 1210.7215, arXiv.org, revised Apr 2015.
    2. Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9vd036zx, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    4. Thanasis Stengos & Ximing Wu, 2010. "Information-Theoretic Distribution Test with Application to Normality," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 307-329.
    5. Wu, Ximing & Perloff, Jeffrey M., 2005. "GMM Estimation of a Maximum Distribution With Interval Data," Institute for Research on Labor and Employment, Working Paper Series qt7jf5w1ht, Institute of Industrial Relations, UC Berkeley.
    6. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    7. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    8. Ximing Wu & Thanasis Stengos, 2005. "Partially adaptive estimation via the maximum entropy densities," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 352-366, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:5:y:1987:i:5:p:329-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.